|本期目录/Table of Contents|

[1]李 赞,李 怡,蒋 朵,等.铜离子掺杂聚乙烯亚胺/碳纳米管热电薄膜的制备与表征[J].武汉工程大学学报,2024,46(04):398-403.[doi:10.19843/j.cnki.CN42-1779/TQ.202312024]
 LI Zan,LI Yi,JIANG Duo,et al.Preparation and characterization of copper ions-doped polyethyleneimine/carbon nanotubes thermoelectric thin films[J].Journal of Wuhan Institute of Technology,2024,46(04):398-403.[doi:10.19843/j.cnki.CN42-1779/TQ.202312024]
点击复制

铜离子掺杂聚乙烯亚胺/碳纳米管
热电薄膜的制备与表征
(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
46
期数:
2024年04期
页码:
398-403
栏目:
材料科学与工程
出版日期:
2024-08-28

文章信息/Info

Title:
Preparation and characterization of copper ions-doped polyethyleneimine/
carbon nanotubes thermoelectric thin films
文章编号:
1674 - 2869(2024)04 - 0398 - 06
作者:
李 赞李 怡蒋 朵杜飞鹏张云飞*
武汉工程大学材料科学与工程学院,湖北 武汉 430205
Author(s):
LI ZanLI YiJIANG DuoDU FeipengZHANG Yunfei*
School of Materials Science and Engineering,Wuhan Institute of Technology, Wuhan 430205, China
关键词:
铜离子铜氨离子聚乙烯亚胺单壁碳纳米管复合薄膜热电性能
Keywords:
copper ions copper ammonia ions polyethyleneimine single-wall carbon nanotubes composite film thermoelectric performance
分类号:
O631;TB34
DOI:
10.19843/j.cnki.CN42-1779/TQ.202312024
文献标志码:
A
摘要:
以单壁碳纳米管(SWCNT)为基体,掺入适量的Cu2+或[Cu(NH3)4]2+和聚乙烯亚胺(PEI),通过溶液共混和真空抽滤方法制备得到Cu2+-PEI/SWCNT和[Cu(NH3)4]2+-PEI/SWCNT复合薄膜。通过扫描电子显微镜法、X射线能谱仪、红外光谱、拉曼光谱和热电仪器表征了复合薄膜的结构与性能。研究结果表明:适量Cu2+和PEI掺杂SWCNT时,优化了SWCNT的载流子浓度和迁移率,提升了体系的电导率,最大电导率为1 101.3 S·cm-1,功率因子最高达到93.4 μW·m-1·K-2。掺杂[Cu(NH3)4]2+和PEI时,提升了SWCNT的载流子迁移率,显著提升了体系的塞贝克系数,最大塞贝克系数为45.0 μV·K-1,功率因子最高达到72.3 μW·m-1·K-2。虽然Cu2+和[Cu(NH3)4]2+提升SWCNT热电性能的机理不同,但功率因子都高于PEI/SWCNT(55.7 μW·m-1·K-2)。
Abstract:
Using single-wall carbon nanotubes (SWCNTs) as matrix and an appropriate amount of Cu2+ or [Cu(NH3)4]2+ and polyethyleneimine (PEI) as dopants,Cu2+-PEI/SWCNT and [Cu(NH3)4]2+-PEI/SWCNT composite thin films were prepared through solution blending and vacuum filtration methods. The structures and properties of the composite films were characterized using scanning electron microscopy,energy-dispersive X-ray spectroscopy,infrared spectroscopy,Raman spectroscopy,and thermoelectric instrument. The results reveal that optimizing the SWCNT carrier concentration and mobility enhances the system conductivity when doping with an appropriate amount of Cu2+ and PEI. The maximum conductivity achieved is 1 101.3 S·cm-1,with the highest power factor of 93.4 μW·m-1·K-2. Doping with [Cu(NH3)4]2+ and PEI only increased the SWCNT carrier mobility,significantly enhancing the system’s Seebeck coefficient,with a maximum value of 45.0 μV·K-1,and the highest power factor of 72.3 μW·m-1·K-2. The mechanisms through which Cu2+ and [Cu(NH3)4]2+ enhance the thermoelectric performance of SWCNT are different,but both power factors surpassing that of PEI/SWCNT (55.7 μW·m-1·K-2).

参考文献/References:

[1] 鲜于万新,夏致祥,田贵森,等. 苯胺四聚体/还原氧化石墨烯薄膜的热电性能研究[J]. 武汉工程大学学报,2023,45(5):517-523.

[2] YANG X, WANG C Y, LU R, et al. Progress in measurement of thermoelectric properties of micro/nano thermoelectric materials:a critical review [J]. Nano Energy,2022,101:107553.
[3] WEI S S, ZHANG Y C, Lü H C, et al. SWCNT network evolution of PEDOT:PSS/SWCNT composites for thermoelectric application [J]. Chemical Engineering Journal,2022,428:131137.
[4] SHI X L,ZOU J,CHEN Z G. Advanced thermoelectric design:from materials and structures to devices [J]. Chemical Reviews,2020,120(15):7399-7515.
[5] CAO G B,NIE X X,REN Z B,et al. Simultaneously achieving green p- and n-type single-walled carbon nanotube composites by natural amino acids with high performance for thermoelectrics [J]. ACS Sustainable Chemistry & Engineering,2022,10(36):12009-12015.
[6] HAN J F, SONG Y J, CHEN N, et al. A dichlorinated dithienylethene-diketopyrrolopyrrole-based copolymer with pronounced P-N crossover:evidence for anionic Seebeck contribution [J]. ACS Materials Letters,2022,4(6):1139-1145.
[7] NG H K,ABUTAHA A,VOIRY D,et al. Effects of structural phase transition on thermoelectric performance in lithium-intercalated molybdenum disulfide (LixMoS2) [J]. ACS Applied Materials & Interfaces,2019,11(13):12184-12189.
[8] 陈思莹,张慧,张桥,等. 植酸掺杂聚苯胺/碳纳米管复合热电薄膜的制备与表征[J]. 武汉工程大学学报,2023,45(2):175-180.
[9] HE G L,NIE X X,CAO G B,et al. Achieving air-stable n-type single-walled carbon nanotubes with high thermoelectric performance by doping with polyethylene glycol and N,N-dimethylferrocene-methylamine[J]. Composites Science and Technology,2023,238:110043.
[10] WEI J C, WU D L, LIU C F, et al. Free-standing p-type SWCNT/MXene composite films with low thermal conductivity and enhanced thermoelectric performance [J]. Chemical Engineering Journal,2022,439:135706.
[11] ZHOU Y, LIU Y J, ZHOU X Y, et al. High performance p-type organic thermoelectric materials based on metalloporphyrin/single-walled carbon nanotube composite films [J]. Journal of Power Sources,2019,423:152-158.
[12] QIN Y Y, ZHANG Q C,CHEN G M. Organic borate doped carbon nanotube for enhancement of thermoelectric performance [J]. Carbon,2021,182:742-748.
[13] TABOROWSKA P, JANAS D. Seamless design of thermoelectric modules from single-walled carbon nanotubes [J]. Journal of Materials Chemistry C,2022,10(17):6818-6826.
[14] XIA Z X, TIAN G S, XIAN-YU W X, et al. Enhancement effect of the C60 derivative on the thermoelectric properties of n-type single-walled carbon nanotube-based films [J]. ACS Applied Materials & Interfaces,2022,14(49):54969-54980.
[15] ZHANG M, CAO X Y, WEN M, et al. Highly electrical conductive PEDOT:PSS/SWCNT flexible thermoelectric films fabricated by a high-velocity non-solvent turbulent secondary doping approach [J]. ACS Applied Materials & Interfaces,2023,15(8):10947-10957.
[16] CHEN Y L, YAO Q, QU S Y, et al. Significantly enhanced thermoelectric properties of copper phthalocyanine/single-walled carbon nanotube hybrids by iodine doping [J]. ACS Applied Materials & Interfaces,2021,13(46):55156-55163.
[17] LI Z,JIANG D,GONG J Y,et al. N-type silver ammonia-polyethyleneimine/single-walled carbon nanotube composite films with enhanced thermoelectric properties [J]. Physical Chemistry Chemical Physics,2023,25(42):29192-29200.
[18] ZHANG Y A,LU R W,ZHANG S F,et al. Intelligent light-driven flexible solar thermoelectric system [J]. Chemical Engineering Journal,2021,423:130260.
[19] PENG X X, QIAO X, LUO S, et al. Modulating carrier type for enhanced thermoelectric performance of single-walled carbon nanotubes/polyethyleneimine composites [J]. Polymers,2019,11(8):1295.
[20] DENG W J, DENG L, LI Z P, et al. Synergistically boosting thermoelectric performance of PEDOT:PSS/SWCNT composites via the ion-exchange effect and promoting SWCNT dispersion by the ionic liquid [J]. ACS Applied Materials & Interfaces,2021,13(10):12131-12140.
[21] CHEN Y L, YAO Q, QU S Y, et al. Enhanced thermoelectric performance of phthalocyanine complexes/single-walled carbon nanotube hybrids by tuning the types of metal coordination ions [J]. Composites Communications,2021,27:100891.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2023-12-20
基金项目:国家自然科学基金(51803157)
作者简介:李 赞,硕士研究生。Email:lizb1005@163.com
*通信作者:张云飞,博士,副教授。Email:zyf3006@126.com
引文格式:李赞,李怡,蒋朵,等. 铜离子掺杂聚乙烯亚胺/碳纳米管热电薄膜的制备与表征[J]. 武汉工程大学学报,2024,46(4):398-403.
更新日期/Last Update: 2024-08-31