|本期目录/Table of Contents|

[1]王 鑫,苏春平*,陈 嵘*.Cu2(OH)PO4/Bi2WO6复合材料光活化过硫酸盐降解2,4-二氯苯酚和双酚A研究[J].武汉工程大学学报,2024,46(03):237-243.[doi:10.19843/j.cnki.CN42-1779/TQ.202404019]
 WANG Xin,SU Chunping*,CHEN Rong*.Degradation of 2,4-dichlorophenol and bisphenol A with persulfatephotoactivated by Cu2(OH)PO4 / Bi2WO6[J].Journal of Wuhan Institute of Technology,2024,46(03):237-243.[doi:10.19843/j.cnki.CN42-1779/TQ.202404019]
点击复制

Cu2(OH)PO4/Bi2WO6复合材料光活化过硫酸盐降解2,4-二氯苯酚和双酚A研究(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
46
期数:
2024年03期
页码:
237-243
栏目:
化学与化学工程
出版日期:
2024-06-30

文章信息/Info

Title:
Degradation of 2,4-dichlorophenol and bisphenol A with persulfate
photoactivated by Cu2(OH)PO4 / Bi2WO6
文章编号:
1674 - 2869(2024)03 - 0237 - 07
作者:
王 鑫1苏春平*1陈 嵘*2
1. 武汉工程大学化学与环境工程学院,湖北 武汉 430205;
2. 武汉纺织大学纺织新材料与先进加工技术省部共建国家重点实验室,湖北 武汉 430200
Author(s):
WANG Xin1SU Chunping*1CHEN Rong*2
1. School of Chemical and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China;
2. State Key Laboratory of New Textile Materials and Advanced Processing Technology, Wuhan Textile University,
Wuhan 430200, China
关键词:
钨酸铋复合材料过硫酸盐光催化
Keywords:
bismuth tungstate composite material persulfate photocatalysis
分类号:
TQ116
DOI:
10.19843/j.cnki.CN42-1779/TQ.202404019
文献标志码:
A
摘要:
采用两步水热法制备不同Cu2(OH)PO4/Bi2WO6复合材料,通过X射线粉末衍射和扫描电子显微镜确定其物相组成和形貌。利用火焰原子吸收光谱测定Cu2(OH)PO4的实际负载量。复合材料用于可见光下活化过硫酸盐(PDS)降解2,4-二氯苯酚(DCP)和双酚A(BPA),Cu2(OH)PO4与Bi2WO6的摩尔比为1∶4时具有最佳的催化性能,可见光光照60 min内DCP和BPA的降解率分别达93.4%和89.8%。对照实验表明,可见光、催化剂和PDS三要素的协同作用促进了BPA的降解。探究了催化剂用量、PDS浓度和BPA初始浓度对BPA降解性能的影响。结果表明催化剂用量越大,BPA降解率越高;PDS浓度对其无明显影响;BPA初始浓度越高,BPA降解速率越慢。自由基捕获剂实验结果表明反应体系中硫酸根自由基(·SO4-)和羟基自由基(·OH)是降解BPA的主要活性物种。
Abstract:
Different Cu2(OH)PO4/Bi2WO6 composite materials were prepared using a two-step hydrothermal method. The phase composition and morphology of the materials were characterized by X-ray powder diffraction and scanning electron microscopy. The actual loading of Cu2(OH)PO4 was determined using flame atomic absorption spectroscopy. These composites were utilized to activate persulfate (PDS) for degrading 2,4-dichlorophenol (DCP) and bisphenol A (BPA) under visible light. Optimal catalytic performance was achieved with a Cu2(OH)PO4-to-Bi2WO6 molar ratio of 1∶4, with degradation rates of 93.4% for DCP and 89.8% for BPA within 60 minutes of visible light exposure. Control experiments highlighted the synergistic effect of visible light, catalyst, and PDS on promoting BPA degradation. The impact of catalyst dosage, PDS concentration, and initial BPA concentration on the degradation performance of BPA was investigated. Results revealed that higher catalyst dosages led to increased BPA degradation rates, while PDS concentration had no significant influence. Higher initial BPA concentrations correlated with slower degradation rates. Free radical scavenging experiments identified sulfate radicals (?SO4-) and hydroxyl radicals (?OH) as the primary active species responsible for BPA degradation in the reaction system.

参考文献/References:

[1] MORIN-CRINI N,LICHTFOUSE E,LIU G,et al. Worldwide cases of water pollution by emerging contaminants: a review [J] Environmental Chemistry Letters,2022,20(4):2311-2338.

[2] 郭远选,王静,周佳,等.手性农药的环境行为及毒理学研究进展[J]. 武汉工程大学学报,2023,45(6):591-598.
[3] LEE J,VON GUNTEN U,KIM J H. Persulfate-based advanced oxidation: critical assessment of opportunities and roadblocks [J]. Environmental Science & Technology,2020,54(6):3064-3081.
[4] 肖妮,朱小涵,王小凤,等.热解工艺条件对生物炭活化过硫酸盐性能的影响[J]. 武汉工程大学学报,2024,46(2):130-136.
[5] WEI Z S,VILLAMENA F A,WEAVERS L K. Kinetics and mechanism of ultrasonic activation of persulfate: an in situ EPR spin trapping study [J]. Environmental Science & Technology,2017,51(6):3410-3417.
[6] GARCíA-CERVILLA R, SANTOS A, ROMERO A,et al. Compatibility of nonionic and anionic surfactants with persulfate activated by alkali in the abatement of chlorinated organic compounds in aqueous phase [J]. Science of the Total Environment,2021,751:141872-141881.
[7] DENG X Y,ZHAO Z W,WANG C,et al. Insight into the nonradical mechanism of persulfate activation via visible-light for enhanced degradation of sulfonamides without catalyst [J]. Applied Catalysis B: Environmental,2022,316:121653-121667.
[8] MATZEK L W,TIPTON M J,FARMER A T,et al. Understanding electrochemically activated persulfate and its application to ciprofloxacin abatement [J]. Environmental Science & Technology,2018,52(10):5875-5883.
[9] FU C,YI X L,LIU Y,et al. Cu2+ activated persulfate for sulfamethazine degradation [J]. Chemosphere,2020,257:127294-127302.
[10] TIAN D Q,ZHOU H Y,ZHANG H,et al. Heterogeneous photocatalyst-driven persulfate activation process under visible light irradiation: from basic catalyst design principles to novel enhancement strategies [J]. Chemical Engineering Journal,2022,428:131166-131180.
[11] YI H,QIN L,HUANG D L,et al. Nano-structured bismuth tungstate with controlled morphology: fabrication, modification, environmental application and mechanism insight [J]. Chemical Engineering Journal,2019,358:480-496.
[12] LOW J X,JIANG C J,CHENG B,et al. A review of direct Z-scheme photocatalysts [J]. Small Methods,2017,1(5):1700080-1700101.
[13] LOW J X,YU J G,JARONIEC M,et al. Heterojunction photocatalysts [J]. Advanced Materials,2017,29(20):1601694-1601714.
[14] Lü Y R,WANG Z L,YANG Y X,et al. Tin bisulfide nanoplates anchored onto flower-like bismuth tungstate nanosheets for enhancement in the photocatalytic degradation of organic pollutant [J]. Journal of Hazardous Materials,2022,432:128665-128673.
[15] YANG Q, BAI C W, SUN Y J, et al. Efficient degradation of antibiotics by heterojunction photocatalysts driving peroxydisulfate activation under visible light irradiation [J]. Chemical Engineering Journal,2023,473:145221-145233.
[16] YUAN X J, SHEN D Y, ZHANG Q,et al. Z-scheme Bi2WO6/CuBi2O4 heterojunction mediated by interfacial electric field for efficient visible-light photocatalytic degradation of tetracycline [J]. Chemical Engineering Journal,2019,369:292-301.
[17] WU J M,LI K Y, YANG S Y, et al. In-situ construction of BiOBr/Bi2WO6 S-scheme heterojunction nanoflowers for highly efficient CO2 photoreduction: regulation of morphology and surface oxygen vacancy [J]. Chemical Engineering Journal,2023,452:139493-139503.
[18] SUN J, SHEN C H, GUO J, et al. Highly efficient activation of peroxymonosulfate by Co3O4/Bi2WO6 p-n heterojunction composites for the degradation of ciprofloxacin under visible light irradiation [J]. Journal of Colloid and Interface Science,2021,588:19-30.
[19] WU R Y, SONG H B, LUO N, et al. Hydrothermal preparation of 3D flower-like BiPO4/Bi2WO6 microsphere with enhanced visible-light photocatalytic activity [J]. Journal of Colloid and Interface Science,2018,524:350-359.
[20] YANG C Y,CHAI H,XU P,et al. One-step synthesis of a 3D/2D Bi2WO6/g-C3N4 heterojunction for effective photocatalytic degradation of atrazine: kinetics, degradation mechanisms and ecotoxicity [J]. Separation and Purification Technology,2022,288:120609-120624.
[21] SUBHIKSHA V,OKLA M K,ALARAIDH I A,et al. A prominent dual heterojunction framed CuWO4/Bi2WO6/MnS ternary NCs for para-chlorophenol degradation, Cr(VI) reduction & toxicity studies [J]. Chemosphere,2022,302:134802-134813.
[22] WANG L F, LIU Y G, LIN Y J, et al. Z-scheme Cu2(OH)3F nanosheets-decorated 3D Bi2WO6 heterojunction with an intimate hetero-surface contact through a hydrogen bond for enhanced photoinduced charge separation and transfer [J]. Chemical Engineering Journal,2022,427:131704-131715.
[23] LIU G S, ZHOU Y N, TENG J,et al. Visible-light-driven photocatalytic activation of peroxymonosulfate by Cu2(OH)PO4 for effective decontamination [J]. Chemosphere,2018,201:197-205.
[24] WANG L L,LAN X,PENG W Y,et al. Uncertainty and misinterpretation over identification, quantification and transformation of reactive species generated in catalytic oxidation processes: a review [J]. Journal of Hazardous Materials,2021,408:124436-124453.
[25] WANG Y, PAN T, YU Y F, et al. A novel peroxy-monosulfate (PMS)-enhanced iron coagulation process for simultaneous removal of trace organic pollutants in water [J]. Water Research,2020,185:116136-116144.

相似文献/References:

[1]吕进玉,林志东*,曾文.RuO2/聚苯胺复合材料电极的制备及电化学性能表征[J].武汉工程大学学报,2008,(01):62.
 L Jin yu,LIN Zhi dong,ZENG Wen.The preparation of complex RuO2/polyaniline electrode material andcharacterization of electrochemical capability[J].Journal of Wuhan Institute of Technology,2008,(03):62.
[2]杜宇,王升高,许传波,等.微波法制备纳米碳管-碳化钛复合粉体[J].武汉工程大学学报,2011,(04):54.[doi:10.3969/j.issn.16742869.2011.04.014]
 DU Yu,WANG Sheng gao,XU Chuan bo,et al.Preparation of CNTS/TiC powder by microwave[J].Journal of Wuhan Institute of Technology,2011,(03):54.[doi:10.3969/j.issn.16742869.2011.04.014]
[3]季家友,苏奇,陈卓,等.芳纶Ⅲ的氧气等离子的表面改性[J].武汉工程大学学报,2012,(06):62.[doi:103969/jissn16742869201206016]
 JI Jia\|you,SU Qi,CHEN Zhuo,et al.Study on O2 plasma surface modification of aramid fiber Ⅲ[J].Journal of Wuhan Institute of Technology,2012,(03):62.[doi:103969/jissn16742869201206016]
[4]王传新,谢秋实,汪建华,等.碳纳米纤维/镍管复合材料的制备[J].武汉工程大学学报,2013,(01):31.[doi:16742869(2013)01003105]
 WANG Chuan xin,XIE Qiu shi,WANG Jian hua,et al.Preparation of carbon nanofiber/Nickel hollow fiber?composite materials[J].Journal of Wuhan Institute of Technology,2013,(03):31.[doi:16742869(2013)01003105]
[5]张晖,马玉莹,苏亚兰,等.磷石膏/聚丙烯复合材料制备[J].武汉工程大学学报,2013,(05):61.[doi:103969/jissn16742869201305013]
 ZHANG Hui,MA Yu ying,SU Ya lan,et al.Preparation of phosphogypsum/polypropylene composites[J].Journal of Wuhan Institute of Technology,2013,(03):61.[doi:103969/jissn16742869201305013]
[6]郑聚成,向腾瑞,林志东.纳米白炭黑增强丁苯橡胶材料的制备与表征[J].武汉工程大学学报,2014,(02):48.
 Zhen Jucheng,Lin Zhidong,Xiang Tengrui.Characterization and preparation of silica/styrene butadiene rubber nanocomposites[J].Journal of Wuhan Institute of Technology,2014,(03):48.
[7]曹 宏,张小莉,刘冰洋,等.微硅粉/聚丙烯复合材料制备与表征[J].武汉工程大学学报,2014,(03):29.
 CAO Hong*,ZHANG Xiao-li,LIU Bing-yang,et al.Preparation and characterization of microsilica / polypropylene composite[J].Journal of Wuhan Institute of Technology,2014,(03):29.
[8]郑聚成,向腾瑞,林志东.纳米白炭黑增强丁苯橡胶材料的制备与表征[J].武汉工程大学学报,2014,(03):44.[doi:103969/jissn16742869201403009]
 ZHEN Ju cheng,XIANG Teng rui,LIN Zhi dong.Characterization and preparation of silica/styrene butadiene rubber nanocomposites[J].Journal of Wuhan Institute of Technology,2014,(03):44.[doi:103969/jissn16742869201403009]
[9]曹宏*,张小莉,刘冰洋,等.微硅粉/聚丙烯复合材料制备与表征[J].武汉工程大学学报,2014,(04):50.[doi:103969/jissn16742869201404011]
 CAO Hong,ZHANG Xiao li,LIU Bing yang,et al.Preparation and characterization of microsilica/polypropylene composite[J].Journal of Wuhan Institute of Technology,2014,(03):50.[doi:103969/jissn16742869201404011]
[10]季家友,夏宁,苏奇,等.乙酸酐改性对芳纶/环氧复合材料的影响[J].武汉工程大学学报,2014,(07):39.[doi:103969/jissn16742869201407008]
 JI Jia you,XIA Ning,SU Qi,et al.Effect of acetic anhydride modification on interface of aramid fiber/epoxy composites[J].Journal of Wuhan Institute of Technology,2014,(03):39.[doi:103969/jissn16742869201407008]

备注/Memo

备注/Memo:
收稿日期:2024-04-13
基金项目:国家自然科学基金(22076149);湖北省自然科学基金青年项目(2023AFB332)
作者简介:王 鑫,硕士研究生。Email:WANGXin212420@163.com
*通信作者:苏春平,博士,讲师。Email:cpsu2019@wit.edu.cn
陈 嵘,博士,教授。Email: rchenhku@hotmail.com
引文格式:王鑫,苏春平,陈嵘. Cu2(OH)PO4/Bi2WO6复合材料光活化过硫酸盐降解2,4-二氯苯酚和双酚A研究 [J]. 武汉工程大学学报,2024,46(3):237-243.
更新日期/Last Update: 2024-07-02