|本期目录/Table of Contents|

[1]杨长游,汤婷婷,刘秋美,等.基于网络药理学探究防己茯苓汤治疗肾病综合征的成分与机制[J].武汉工程大学学报,2023,45(05):496-505.[doi:10.19843/j.cnki.CN42-1779/TQ.202209012]
 YANG Changyou,TANG Tingting,LIU Qiumei,et al.Exploring Components and Mechanisms of Fangji Fuling Decoction in Treatment of Nephrotic Syndrome Based on Network Pharmacology[J].Journal of Wuhan Institute of Technology,2023,45(05):496-505.[doi:10.19843/j.cnki.CN42-1779/TQ.202209012]
点击复制

基于网络药理学探究防己茯苓汤治疗肾病综合征的成分与机制(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
45
期数:
2023年05期
页码:
496-505
栏目:
化学与化学工程
出版日期:
2023-11-17

文章信息/Info

Title:
Exploring Components and Mechanisms of Fangji Fuling Decoction in Treatment of Nephrotic Syndrome Based on Network Pharmacology

文章编号:
1674 - 2869(2023)05 - 0496 - 10
作者:
杨长游汤婷婷刘秋美黄遵楠*
广东医科大学东莞市计算机辅助药物设计重点实验室,广东 东莞? ?523808
Author(s):
YANG Changyou TANG Tingting LIU Qiumei HUANG Zunnan*
Dongguan Key Laboratory of Computer-Aided Drug Design, Guangdong Medical University, Dongguan 523808,?China
关键词:
防己茯苓汤肾病综合征网络药理学信号通路
Keywords:
Fangji Fuling decoctionnephrotic syndromenetwork pharmacologysignaling pathways
分类号:
R289
DOI:
10.19843/j.cnki.CN42-1779/TQ.202209012
文献标志码:
A
摘要:
为了探究防己茯苓汤(FJFL)治疗肾病综合征(NS)的作用机制,结合网络药理学和分子对接的方法,通过TCMSP数据库和SwissTargetPrediction在线靶点平台获取FJFL的活性成分及其潜在作用靶点;从GEO数据库和DisGenet数据库获取NS的疾病靶点;采用STRING数据库对“复方-疾病”的共同靶点进行蛋白互作分析,并在Cytoscape软件上构建核心靶点网络;在DAVID数据库上对核心靶点进行基因本体论(GO)分析和京都基因和基因组数据库(KEGG)分析,获取FJFL治疗NS的核心通路机制。最后,利用Autodock Vina对核心化合物和核心靶点进行分子对接。结果表明FJFL包含106个主要活性成分以及309个药物靶点,与1 835个NS疾病靶点相交联后得到72个共同靶点;经MCODE分析得到一个包含30个靶点的核心网络。KEGG分析表明靶点涉及21条相关信号通路网络,包括VEGF信号通路、NF-κB信号通路、HIF-1信号通路等,分子对接显示核心化合物与靶点网络具备良好的对接可能性,其中最优对接结果为NOS3_quercetin。进一步研究表明 Kaempferol和Cortisol一样能够与糖皮质受体(GR)较好的结合,有潜力成为GR的天然调节剂。同时,对核心化合物Quercetin和Kaempferol基于网络的测量表明在化学特性、生物学功能和临床特征方面两者具有相关性,有成为药物对使用的潜力。本研究探究了FJFL治疗NS的活性成分及其作用机制,为进一步深入阐明该复方治疗NS的物质基础和作用机制提供参考。
Abstract:
This study aims to investigate the mechanism of Fangji Fuling decoction (FJFL) in the treatment of nephrotic syndrome (NS) by network pharmacology. First, TCMSP database and SwissTargetPrediction online platform were used to collect compounds and their potential targets, whereas GEO data and DisGenet database were used to obtain nephrotic syndrome-related targets. Second, the common targets of FJFL-NS obtained from the intersection were imported into the string database and the protein-protein interaction network was further constructed by the MCODE plug-in in Cytoscape. Third, Gene ontology annotation analysis and KEGG pathway enrichment analysis were performed on the core-target PPI module using the David database to obtain pathways highly relevant to NS pathogenesis. Finally, the docking potential of the core targets with the active compounds was further evaluated using Autodock Vina. The results showed that a total of 106 major active compounds are screened, and 72 common targets are obtained after their 309 potential targets are intersected with 1 835 disease targets. After MCODE analysis, a core network containing 30 targets was obtained. KEGG analysis indicated that the target network involves 21 NS-related signaling pathways, including VEGF, NF-κB, HIF-1 and etc.. Molecular docking demonstrated that the core compounds have good docking potential with the target network, among which NOS3-quercetin has strongest affinify. Further studies revealed that Kaempferol, like Cortisol, could bind to the glucocorticoid receptor (GR) well, and has the potential to become a natural regulator of GR. Besides, network-based measurements of core compounds quercetin and kaempferol showed that the two are closely related in terms of chemical properties, biological functions and clinical features, suggesting their potential as drug pairs. This study investigated the active components and potential mechanisms of Fangji Fuling decoction in the treatment of NS, which may provide a reference for further exploring the material basis and action mechanism of this decoction in NS therapy.

参考文献/References:

[1] NOONE D G, IIJIMA K, PAREKH R. Idiopathic nephrotic syndrome in children[J]. Lancet Infectious Diseases, 2018, 392: 61-74.

[2] KAWACHI H, FUKUSUMI Y. New insight into podocyte slit diaphragm, a therapeutic target of proteinuria[J]. Clinical and Experimental Nephrology, 2020, 24(3): 193-204.
[3] TRAUTMANN A, SCHNAIDT S, LIPSKA-ZIETKIEWICZ B S, et al. Long-term outcome of steroid-resistant nephrotic syndrome in children[J]. Journal of the American Society of Nephrology, 2017, 28(10): 3055-3065.
[4] WANG N, DU N L, PENG Y H, et al. Network patterns of herbal combinations in traditional Chinese clinical prescriptions[J]. Frontiers in Pharmacology, 2020, 11: 590824: 1-12.
[5] 刘玲. 防己茯苓汤治疗肾病综合征体会[J]. 中国民族民间医药, 2010, 19(22): 188.
[6] HATTORI T, HAYASHI K, NAGAO T, et al. Studies on antinephritic effects of plant components (3): effect of pachyman, a main component of Poria cocos Wolf on original-type anti-GBM nephritis in rats and its mechanisms[J]. Japanese Journal of Pharmacology, 1992, 59(1): 89-96.
[7] YU J, ZHU C F, YIN J Z, et al. Tetrandrine suppresses transient receptor potential cation channel protein 6 overexpression- induced podocyte damage via blockage of RhoA/ROCK1 signaling[J]. Drug Design, Development and Therapy,2020,14:361-370.
[8] BERGER S I, IYENGAR R. Network analyses in systems pharmacology[J]. Bioinformatics and Biology Insights, 2009, 25(19): 2466-2472.
[9] XU X, ZHANG W X, HUANG C, et al. A novel chemometric method for the prediction of human oral bioavailability[J]. International Journal of Molecular Sciences, 2012, 13(6): 6964-6982.
[10] GFELLER D, GROSDIDIER A, WIRTH M, et al. SwissTargetPrediction: a web server for target prediction of bioactive small molecules[J]. Nucleic Acids Research, 2014, 42: 32-38.
[11] GU S Z, XUE Y, GAO Y, et al. Mechanisms of indigo naturalis on treating ulcerative colitis explored by GEO gene chips combined with network pharmacology and molecular docking[J]. Scientific Reports, 2020, 10(1): 15204:1-17.
[12] BADER G D, HOGUE C W V. An automated method for finding molecular complexes in large protein interaction networks[J]. BMC Bioinformatics, 2003, 4: 2:1-27.
[13] DENNIS G J R, SHERMAN B T, HOSACK D A, et al. DAVID: database for annotation, visualization, and integrated discovery[J]. Genome Biology and Evolution, 2003, 4: R60:1-11.
[14] SEELIGER D, DE GROOT B L. Ligand docking and binding site analysis with PyMOL and autodock/vina[J]. Journal of Computer-aided Molecular Design, 2010, 24(5): 417-422.
[15] LI X X, XU X, WANG J N, et al. A system-level investigation into the mechanisms of Chinese traditional medicine: compound Danshen formula for cardiovascular disease treatment[J]. Public Library of Science, 2012, 7(9): e43918:1-16.
[16] CHENG F, KOVáCS I A, BARABáSI A L. Network-based prediction of drug combinations[J]. Nature Communications, 2019, 10(1): 1197.
[17] WANG C S, GREENBAUM L A. Nephrotic syndrome[J]. Pediatric Clinics of North America, 2019, 66(1): 73-85.
[18] 孙蕾. 防己茯苓汤对急性肾损伤患者肾组织蛋白表达的影响[J]. 中医学报, 2016, 31: 715-717.
[19] CHENG H F, WANG S W, JO Y I, et al. Overexpression of cyclooxygenase-2 predisposes to podocyte injury[J]. Journal of the American Society of Nephrology, 2007, 18(2): 551-559.
[20] 任玮, 王湘, 包瑛, 等. 雌激素抑制受体型酪氨酸磷酸酯酶O促进小鼠肾足细胞增殖[J]. 分子影像学杂志, 2018, 41(4): 520-524.
[21] HAKIM F A, PFLUEGER A. Role of oxidative stress in diabetic kidney disease[J]. Medical Science Monitor, 2010, 16(2): 37-48.
[22] KOSHIKAWA M, MUKOYAMA M, MORI K, et al. Role of p38 mitogen-activated protein kinase activation in podocyte injury and proteinuria in experimental nephrotic syndrome[J]. Journal of the American Society of Nephrology, 2005, 16(9): 2690-2701.
[23] VERON D, REIDY K, MARLIER A, et al. Induction of podocyte VEGF164 overexpression at different stages of development causes congenital nephrosis or steroid-resistant nephrotic syndrome[J]. The American Journal of Pathology, 2010, 177(5): 2225-2233.
[24] ZHAI S B, LI M N, SUN B C, et al. Amelioration of lipopolysaccharide-induced nephrotic proteinuria by NFAT5 depletion involves suppressed NF-κB activity[J]. Inflammation, 2019, 42(4):1326-1335.
[25] SUN X M, SUN X H, LI Z Y, et al. Expression of NF-κB in juvenile rats with nephrotic syndrome and its effects on inflammatory changes and renal injury[J]. European Review for Medical and Pharmacological Sciences, 2019, 23(9): 4010-4016.
[26] SINGH A K, KOLLIGUNDLA L P, FRANCIS J, et al. Detrimental effects of hypoxia on glomerular podocytes[J]. Journal of Physiology and Biochemistry, 2021, 77(2): 193-203.
[27] ZHANG T H, LIANG Y, ZHANG J. Natural and synthetic compounds as dissociated agonists of glucocorticoid receptor[J]. Pharmacological Research Communications, 2020, 156: 104802:1-7.
[28] SUNDAHL N, BRIDELANCE J, LIBERT C, et al. Selective glucocorticoid receptor modulation: new directions with non-steroidal scaffolds[J]. Pharmacology and Therapeutics, 2015, 152: 28-41.
[29] LI L, BONNETON F, CHEN X Y, et al. Botanical compounds and their regulation of nuclear receptor action: the case of traditional Chinese medicine[J]. Molecular and Cellular Endocrinology, 2015, 401: 221-237.
[30] LING C Q, LI Y, ZHU X Y, et al. Ginsenosides may reverse the dexamethasone-induced down-regulation of glucocorticoid receptor[J]. General and Comparative Endocrinology, 2005,140(3):203-209.
[31] SUN X J, DENG X H, CAI W J, et al. Icariin inhibits LPS-induced cell inflammatory response by promoting GRα nuclear translocation and upregulating GRα expression[J]. Life Sciences, 2018, 195: 33-43.
[32] LIU H S, SHI H L, HUANG F, et al. Astragaloside IV inhibits microglia activation via glucocorticoid receptor mediated signaling pathway[J]. Scientific Reports, 2016, 6: 19137:1-14.
[33] RIGDEN D J, FERNáNDEZ X M. The 2021 nucleic acids research database issue and the online molecular biology database collection[J]. Nucleic Acids Research, 2021, 49: D1-D9.
[34] ACKLAND M L, VAN DE WAARSENBURG S, JONES R. Synergistic antiproliferative action of the flavonols quercetin and kaempferol in cultured human cancer cell lines[J]. In Vivo, 2005, 19(1): 69-76.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2022-09-01
基金项目:广东省科技创新战略专项(pdjh2021a0217); 广东医科大学大学生创新实验项目(ZYDS003)
作者简介:杨长游,本科生。E-mail:1731298469@qq.com
*通讯作者:黄遵楠,博士,教授。E-mail: zn_huang@gdmu.edu.cn
引文格式:杨长游,汤婷婷,刘秋美,等. 基于网络药理学探究防己茯苓汤治疗肾病综合征的成分与机制[J]. 武汉工程大学学报,2023,45(5):496-505.
更新日期/Last Update: 2023-10-25