|本期目录/Table of Contents|

[1]朱启培,李育房,王彦伟*.离心泵叶轮湿模态及其影响参数分析[J].武汉工程大学学报,2021,43(06):701-705.[doi:10.19843/j.cnki.CN42-1779/TQ. 202012031]
 ZHU Qipei,LI Yufang,WANG Yanwei*.Analysis of Wet Mode and Influencing Parameters of Centrifugal Pump Impeller[J].Journal of Wuhan Institute of Technology,2021,43(06):701-705.[doi:10.19843/j.cnki.CN42-1779/TQ. 202012031]
点击复制

离心泵叶轮湿模态及其影响参数分析(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
43
期数:
2021年06期
页码:
701-705
栏目:
机电与信息工程
出版日期:
2021-12-31

文章信息/Info

Title:
Analysis of Wet Mode and Influencing Parameters of Centrifugal Pump Impeller
文章编号:
1674 - 2869(2021)06 - 0701 - 05
作者:
朱启培李育房王彦伟*
武汉工程大学机电工程学院,湖北 武汉 430205
Author(s):
ZHU QipeiLI YufangWANG Yanwei*
School of Mechanical and Electrical Engineering,Wuhan Institute of Technology,Wuhan 430205,China
关键词:
离心泵叶轮湿模态盖板曲率半径
Keywords:
centrifugal pump impeller wet mode curvature radius of front and rear cover
分类号:
TH311
DOI:
10.19843/j.cnki.CN42-1779/TQ. 202012031
文献标志码:
A
摘要:
采用数值模拟方法,验证了离心泵流道形状的合理性,分析了叶轮干、湿模态的变化规律及叶轮前后盖板曲率半径对叶轮各阶次固有频率的影响。相对干模态,湿模态下离心泵叶轮第1、2阶次固有频率降低24%,第3阶次和第4阶次固有频率分别降低34%和21%,各阶次振型保持一致但振动幅值有明显减小;叶轮前盖板曲率半径为12.3 mm和16.3 mm时,叶轮第1、2阶次固有频率减小而第3、4阶次固有频率增大,叶轮后盖板曲率半径为28 mm和38 mm时,叶轮前4阶次固有频率皆增大。为分析离心泵叶轮的振动特性及结构的优化设计提供了参考。
Abstract:
Numerical simulation methods were used to verify the rationality of the flow channel shape of the centrifugal pump, and the changing regularity of the dry and wet modes of the impeller as well as the impact of the curvature radius of the front and rearc over of the impeller on the natural frequencies of the impeller were analyzed. Relative to dry mode, the 1st and 2nd natural frequencies of the centrifugal pump impeller in the wet mode are reduced by 24%, and the 3rd and 4th natural frequencies are reduced by 34% and 21%, respectively. The vibration shape of each order remains the same, hotvever the vibration amplitude is significantly reduced. When the curvature radii of the front cover of the impeller are 12.3 mm and 16.3 mm, the natural frequencies of the 1st and 2nd orders of the impeller are reduced while the natural frequencies of the 3rd and 4th orders are increased. When the curvature radii of the rearc over of the impeller is 28 mm and 38 mm, the first four natural frequencies of the impeller are all increased. The results provide a reference for analyzing the vibration characteristics of the centrifugal pump impeller and the optimal design of the structure.

参考文献/References:

[1] 孙炳玉,吴询,宋孝臣,等. 基于Lu Gre摩擦模型补偿的动态电液测力建模与实验研究[J]. 制造技术与机床, 2016(4): 60-65.[2] 高海司, 裴吉, 袁寿其, 等. 蜗壳式混流泵叶轮部件湿模态流固耦合分析[J]. 流体机械, 2018, 46(1): 46-51,5.[3] 尹庭赟, 裴吉, 袁寿其. 余热排出泵叶轮流固耦合特性分析[J]. 农业工程学报,2017,33(9):76-83.[4] EGUSQUIZA E, VALERO C, LIANG Q, et al. Fluid added mass effect in the modal response of a pump-turbine impeller[C] // ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. San?Diego:American Society of Mechanical Engineers, 2009: 715-724.[5] RODRIGUEZ C G, EGUSQUIZA E, ESCALER X, et al. Experimental investigation of added mass effects on a Francis turbine runner in still water[J]. Journal of Fluids & Structures, 2006, 22(5): 699-712.[6] 张新, 郑源, 钱钧, 等. 基于流固耦合的卧式轴流泵叶轮模态分析[J]. 水电能源科学,2015, 33(7): 164-167.[7] 陈宇杰, 郑源, 阚阚, 等. 轴流泵转子系统水中模态分析[J]. 排灌机械工程学报, 2017,35(2):126-132.[8] 高豪, 王彦伟. 气-液两相条件下叶轮开孔对高速离心泵的影响[J]. 武汉工程大学学报, 2020, 42(6): 683-687.[9] 王洋, 王洪玉, 张翔, 等. 基于流固耦合理论的离心泵冲压焊接叶轮强度分析[J]. 农业工程学报, 2011(3): 131-136.[10] YIN T, JI P, YUAN S, et al. Fluid-structure interaction analysis of an impeller for a high-pressure booster pump for seawater desalination[J]. Journal of Mechanical Science and Technology, 2017, 31(11): 5319-5328.[11] 施卫东,郭艳磊,张德胜,等. 大型潜水轴流泵转子部件湿模态数值模拟[J]. 农业工程学报,2013,29(24): 72-78,366.[12] 张飞, 樊玉林, 祝宝山, 等. 模型可逆式水泵水轮机S区压力脉动测试[J]. 流体机械, 2019, 47(6): 6-11,28.[13] 张启华, 杨欣叶, 徐媛晖, 等. 不同叶轮形式对汽车冷却水泵性能的影响[J]. 流体机械, 2018, 46(7): 27-31.[14] 陈琪. 锅炉给水泵汽轮机通流设计探讨[J]. 化工设备与管道, 2019, 56(5): 57-60.[15] NING Z, YANG M, BO G, et al. Investigation of rotor-stator interaction and flow unsteadiness in a low specific speed centrifugal pump[J]. Journal of Mechanical Engineering, 2016, 62(1): 21-31.

相似文献/References:

[1]贺秋冬,李丽君,李坤.防爆抽出式对旋轴流局部通风机叶轮的静力分析[J].武汉工程大学学报,2012,(05):68.[doi:103969/jissn16742869201205017]
 HE Qiu\|dong,LI Li\|jun,LI Kun.Impeller static force of extractable explosion\|proof contra\|rotating axial fan for mine local ventilation[J].Journal of Wuhan Institute of Technology,2012,(06):68.[doi:103969/jissn16742869201205017]
[2]高 豪,王彦伟*.气-液两相条件下叶轮开孔对高速离心泵的影响[J].武汉工程大学学报,2020,42(06):683.[doi:10.19843/j.cnki.CN42-1779/TQ.202008018]
 GAOHao,WANG Yanwei*.Effect of Hole-Opening Impeller on High-Speed Centrifugal Pump Under Gas-Liquid Two-Phase Condition[J].Journal of Wuhan Institute of Technology,2020,42(06):683.[doi:10.19843/j.cnki.CN42-1779/TQ.202008018]
[3]蔡洪涛.离心泵双圆弧圆柱形叶片的几何方程[J].武汉工程大学学报,2019,(06):602.[doi:10. 3969/j. issn. 1674-2869. 2019. 06. 016]
 CAI Hongtao.Geometric Equation of Double Arc Cylindrical Blade of Centrifugal Pump[J].Journal of Wuhan Institute of Technology,2019,(06):602.[doi:10. 3969/j. issn. 1674-2869. 2019. 06. 016]

备注/Memo

备注/Memo:
收稿日期:2020-12-29基金项目:国家自然科学基金(51375186);湖北省教育厅重点科研项目(D20161507);湖北省教育厅科学技术研究计划指导性项目(B2021085);化工装备强化与本质安全湖北省重点实验室开放研究基金(2021KA03)作者简介:朱启培,硕士研究生,E-mail:510800986@qq.com。*通讯作者:王彦伟,博士,教授,E-mail:ywwang.cad@gmail.com引文格式:朱启培, 李育房,王彦伟. 离心泵叶轮湿模态及其影响参数分析[J]. 武汉工程大学学报,2021,43(6):701-705.
更新日期/Last Update: 2021-12-27