|本期目录/Table of Contents|

[1]许 硕,冯 力,徐大千,等.稀土离子掺杂荧光粉材料在染料敏化太阳能电池中的研究进展[J].武汉工程大学学报,2021,43(01):45-49.[doi:10.19843/j.cnki.CN42-1779/TQ.202008006]
 XU Shuo,FENG Li,XU Daqian,et al.Research Progress in Rare Earth Ion Doped Phosphor Materials in Dye-Sensitized Solar Cells[J].Journal of Wuhan Institute of Technology,2021,43(01):45-49.[doi:10.19843/j.cnki.CN42-1779/TQ.202008006]
点击复制

稀土离子掺杂荧光粉材料在染料敏化太阳能电池中的研究进展(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
43
期数:
2021年01期
页码:
45-49
栏目:
材料科学与工程
出版日期:
2021-02-28

文章信息/Info

Title:
Research Progress in Rare Earth Ion Doped Phosphor Materials in Dye-Sensitized Solar Cells
文章编号:
1674 - 2869(2021)01 - 0045 - 05
作者:
许 硕冯 力徐大千陈宇龙王 昶徐 慢戴武斌*
武汉工程大学材料科学与工程学院,湖北 武汉 430205
Author(s):
XU ShuoFENG LiXU DaqianCHEN YulongWANG ChangXU ManDAI Wubin*
School of Materials Science and Engineering,Wuhan Institute of Technology,Wuhan 430205,China
关键词:
染料敏化太阳能电池稀土离子荧光粉研究进展
Keywords:
dye-sensitizationsolar cellrare earthphosphorresearch progress
分类号:
TM914.4
DOI:
10.19843/j.cnki.CN42-1779/TQ.202008006
文献标志码:
A
摘要:
介绍了近年来稀土荧光粉材料在染料敏化太阳能电池中的研究进展,稀土发光材料将红外和紫外光转换为可以被太阳能电池吸收的可见光或近红外光,增大了光的响应范围。稀土材料的上/下转换性能还能改善器件的敏化程度、光捕获概率和稳定性。通过掺杂1个或多个稀土离子产生更多的电子-空穴对来达到增大光电效率的目的,控制稀土纳米荧光粉颗粒的粒径也能够增加光透射的距离并减少光的损失。因此,设计稀土荧光粉配比,优化器件结构在提升电池性能中发挥重要作用,对未来太阳能领域的突破和发展具有重要的理论和现实意义。
Abstract:
This review introduces the research progress in rare earth phosphor materials in dye-sensitized solar cells in recent years. Rare earth luminescent materials can convert infrared and ultraviolet into visible or near-infrared light that can be absorbed by solar cells,thus increasing the light response range. The up/down conversion performance of rare earth materials can also improve the sensitization degree,light capture probability and stability of the device. Doping one or more rare earth ions to generate more electron-hole pairs can enhance the photoelectric efficiency,while controlling the particle size of rare earth phosphor particles can increase the distance of light transmission and reduce light loss. Therefore,designing phosphor solutions and optimizing the device structure play important roles in improving battery performance,posing theoretical and practical significance for future breakthroughs and development in the solar field.

参考文献/References:

[1] 田磊,朱伟华,宋宇,等. 染料敏化太阳能电池发展现状[J]. 内江科技,2015(12):100-101.[2] TODOROV T K, SINGH S, BISHOP D M, et al. Ultrathin high band gap solar cells with improved efficiencies from the world’s oldest photovoltaic material [J]. Nature Communications,2017,8:682:1-8.[3] BABAR F, MEHMOOD U, ASGHAR H, et al. Nanostructured photoanode materials and their deposition methods for efficient and economical third generation dye-sensitized solar cells:a comprehensive review [J]. Renewable & Sustainable Energy Reviews,2020,129:109919:1-22.[4] ELISEEVA S V, BüNZLI J G. Lanthanide luminescence for functional materials and bio-sciences [J]. Chemical Society Reviews,2010,39:189-227.[5] CHEN D Q, LIU S, ZHOU Y. Dual-activator luminescence of RE/TM:Y3Al5O12(RE=Eu3+, Tb3+, Dy3+;TM=Mn4+,Cr3+) phosphors for self-referencing optical thermometry[J]. Journal of Materials Chemistry C,2016,4(38):9044-9051.[6] WEI Z R,ZHENG K,HOU T X,et al. Synthesis and luminescent properties of Sr4-xSi3O8Cl4:xEu3+ red phosphor by hydrothermal method [J]. International Journal of Applied Ceramic Technology,2018,15(1):118-124.[7] DUAN C H,DING L M. The new era for organic solar cells:polymer donors [J]. Science Bulletin,2020,65(17):1422-1424.[8] XU Y, YAO H F, MA L J, et al. Efficient charge generation at low energy losses in organic solar cells:a key issues review [J]. Reports on Progress in Physics,2020,83(8):082601.[9] HUANG S Z,CHEN H,HE T,et al. High-performance upconversion luminescent waveguide using a rare-earth doped microtube with beveled ends [J]. Journal of Materials Chemistry C,2019,7(40):12704-12708.[10] WU W P, LIU Y Q, ZHU D B. π-conjugated molecules with fused rings for organic field-effect transistors: design,synthesis and applications [J]. Chemical Society Reviews,2010,39:1489-1502.[11] LI J F,ZHANG H R,LEI B F,et al. Luminescent properties of green long-lasting Ca8Mg(SiO4)4Cl2:Eu2+,from Ca2SO4:Eu3+ and MgCl2 at low temperature[J]. Physica B:Condensed Matter,2013,430:31-35.[12] LIU Y M, XIA Y, JIANG Y, et al. Coupling effects of Au-decorated core-shell β-NaYF4:Er/Yb@SiO2 microprisms in dye-sensitized solar cells:plasmon resonance versus upconversion [J]. Electrochimica Acta,2015,180:394-400.[13] GRIFFINI G,BELLA F,NISIC F,et al. Multifunctional luminescent down-shifting fluoropolymer coatings:a straightforward strategy to improve the UV-light harvesting ability and long-term outdoor stability of organic dye-sensitized solar cells [J]. Advanced Energy Materials,2015,5(3):1401312:1-9.[14] ZHAO B X,WANG J S,LI H Y,et al. Rare earth-activated Y2O3 phosphors with novel morphology for dye-sensitized solar cells [J]. Chemistry Select,2016,6:1136-1139.[15] YAO N N, HUANG J Z, FU K, et al. Efficiency enhancement in dye-sensitized solar cells with down conversion material ZnO:Eu3+,Dy3+ [J]. Journal of Power Sources,2014,267:405-410.[16] WANG J, DU Z Q, HOJAMBERDIWV M, et al. Oxalate-assisted morphological effect of NaYF4:Yb3+,Er3+ on photoelectrochemical performance for dye-sensitized solar cells [J]. Journal of Rare Earths,2018,36(4):353-358.[17] BEDNARKIEWICZ A, WAWRZYNCZYK D,NYK M,et al. Tuning red-green-white up-conversion color in nano NaYF4:Er/Yb phosphor [J]. Journal of Rare Earths,2011,29(12):1152-1156.[18] SHAN G B, ASSAAOUDI H, DEMOPOULOS G P. Enhanced performance of dye-sensitized solar cells by utilization of an external,bifunctional layer consisting of uniform β-NaYF4:Er3+/Yb3+ nanoplatelets [J]. American Chemical Society,2011,3:3239-3243.[19] LI L, YANG Y L,FAN R Q, et al. Conductive upconversion Er,Yb-FTO nanoparticle coating to replace Pt as a low-cost and high-performance counter electrode for dye-sensitized solar cells [J]. ACS Applied Materials & Interfaces,2014,6:8223-8229.[20] XIE G X,WEI Y L,FAN L Q. Application of doped rare-earth oxide TiO2:(Tm3+,Yb3+) in dye-sensitized solar cells [J]. Journal of Physics:Conference Series,2012,339:1742-1765.[21] LUOSHAN M D, BAI L H,BU C H,et al. Surface plasmon resonance enhanced multi-shell-modified upconversion NaYF4:Yb3+,Er3+@SiO2@Au@TiO2 crystallites for dye-sensitized solar cells [J]. Journal of Power Sources,2016,307:468-473.[22] LUO X T,AHN J Y,KIM S H. Aerosol synthesis and luminescent properties of CaAl2O4:Eu2+, Nd3+ down- conversion phosphor particles for enhanced light harvesting of dye-sensitized solar cells [J]. Solar Energy,2019,178:173-180.

相似文献/References:

[1]吴锐敏,樊烨明,李孝斌,等.锌掺杂Ag-In-S量子点发光材料的制备及其性能[J].武汉工程大学学报,2023,45(01):60.[doi:10.19843/j.cnki.CN42-1779/TQ.202103034]
 WU Ruimin,FAN Yeming,LI Xiaobin,et al.Preparation and Properties of Zinc Doped Ag-In-S Quantum DotLuminescent Materials[J].Journal of Wuhan Institute of Technology,2023,45(01):60.[doi:10.19843/j.cnki.CN42-1779/TQ.202103034]

备注/Memo

备注/Memo:
收稿日期:2020-08-05基金项目:湖北省自然科学基金(18S020);湖北省教育厅科学技术研究计划项目(18S069);武汉工程大学博士启动基金(16QD28);武汉工程大学第十一届研究生教育创新基金(CX2019085)作者简介:许 硕,硕士研究生。E-mail:shuo.xu@wit.edu.cn*通讯作者:戴武斌,博士,特聘教授。E-mail:wubin.dai@wit.edu.cn引文格式:许硕,冯力,徐大千,等. 稀土离子掺杂荧光粉材料在染料敏化太阳能电池中的研究进展[J]. 武汉工程大学学报,2021,43(1):45-49.
更新日期/Last Update: 2021-02-07