|本期目录/Table of Contents|

[1]邓 杭,沈喜洲,沈 陟*.纤维素基吸附剂对重金属离子吸附的研究进展[J].武汉工程大学学报,2020,42(04):377-389.[doi:10.19843/j.cnki.CN42-1779/TQ.201910020]
 DENG Hang,SHEN Xizhou,SHEN Zhi *.Research Progress in Cellulose-Based Adsorbents for Heavy Metal Ions[J].Journal of Wuhan Institute of Technology,2020,42(04):377-389.[doi:10.19843/j.cnki.CN42-1779/TQ.201910020]
点击复制

纤维素基吸附剂对重金属离子吸附的研究进展(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
42
期数:
2020年04期
页码:
377-389
栏目:
化学与化学工程
出版日期:
2021-01-28

文章信息/Info

Title:
Research Progress in Cellulose-Based Adsorbents for Heavy Metal Ions
文章编号:
1674 - 2869(2020)04 - 0377 - 13
作者:
邓 杭沈喜洲沈 陟*
武汉工程大学化工与制药学院,湖北 武汉 430205
Author(s):
DENG HangSHEN XizhouSHEN Zhi *
School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
关键词:
纤维素改性重金属离子吸附
Keywords:
cellulose modification heavy metal ions adsorption
分类号:
TQ352.6
DOI:
10.19843/j.cnki.CN42-1779/TQ.201910020
文献标志码:
A
摘要:
纤维素作为一种可再生、对环境友好的生物质资源,成为吸附领域的重点研究对象之一。本文着重介绍了氧化改性、酯化改性、醚化改性、接枝共聚、交联改性和复合改性的纤维素基吸附材料在重金属离子吸附领域的研究进展。这些改性方法均能改善纤维素对重金属离子的吸附性能,但存在着流程较长、吸附条件较为苛刻、金属适用范围各异的局限性。因此,应通过进一步系统研究,找到制备可选择性吸附重金属离子的纤维素基吸附材料经济有效的方法。
Abstract:
As one of the renewable and environmental-friendly biomass resources, cellulose has become a research hotspot in the field of adsorption. In this paper, the research progress of different modification methods for preparing cellulose-based adsorption materials to remove heavy metal ions was emphatically reviewed, focusing on oxidation, esterification, etherification, graft copolymerization, cross-link and hybrid. All of these methods can improve the adsorption ability of cellulose for removing heavy metal ions, but still have the limitations of long preparing process, rigorous adsorption conditions and narrow application scope for different kinds of heavy metal ions. Hence, efficient and economical methods for preparing cellulose-based adsorption materials with high selectivity and adsorption ability of heavy metal ions should be discovered through further system research.

参考文献/References:

[1] HOKKANEN S, BHATNAGAR A, SILLANPAA M. A review on modification methods to cellulose-based adsorbents to improve adsorption capacity[J]. Water Research, 2016, 91: 156-173. [2] CHARPENTIER T V J, NEVILLE A, LANIGAN J L, et al. Preparation of magnetic carboxymethylchitosan nanoparticles for adsorption of heavy metal ions[J]. ACS Omega, 2016, 1(1): 77-83. [3] D’ HALLUIN M, RULL-BARRULL J, BRETEL G, et al. Chemically modified cellulose filter paper for heavy metal remediation in water[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(2): 1965-1973. [4] GE Y Y, LI Z L. Application of lignin and its derivatives in adsorption of heavy metal ions in water: a review[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(5): 7181-7192. [5] LUO X G, LEI X J, CAI N, et al. Removal of heavy metal ions from water by magnetic cellulose-based beads with embedded chemically modified magnetite nanoparticles and activated carbon[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(7): 3960-3969. [6] 柏正武, 徐小琴, 金芬芬, 等. 纤维素-二氧化硅复合颗粒的制备与表征[J]. 武汉工程大学学报, 2013, 35(2): 11-15. [7] FENG L, CHEN Z L. Research progress on dissolution and functional modification of cellulose in ionic liquids[J]. Journal of Molecular Liquids, 2008, 142(1/2/3): 1-5. [8] ISIK M, SARDON H, MECERREYES D. Ionic liquids and cellulose: dissolution, chemical modification and preparation of new cellulosic materials[J]. International Journal of Molecular Sciences, 2014, 15(7): 11922-11940. [9] SOBHANADHAS L S, KESAVAN L, FARDIM P. Topochemical engineering of cellulose-based functional materials[J]. Langmuir, 2018, 34(34): 9857-9878. [10] O’CONNELL D W, BIRKINSHAW C, O’DWYER T F. Heavy metal adsorbents prepared from the modification of cellulose: a review[J]. Bioresource Technology, 2008, 99(15): 6709-6724. [11] RAJESH S, SCHNEIDERMAN S, CRANDALL C, et al. Synthesis of cellulose-graft-polypropionic acid nanofiber cation-exchange membrane adsorbers for high-efficiency separations[J]. ACS Applied Materials & Interfaces, 2017, 9(46): 41055-41065. [12] 李尚优, 曹龙天. 污水处理中二醛纤维素对Cu(Ⅱ)、Cr(Ⅵ)、Zn(Ⅱ)的吸附性能研究[J]. 科技创新导报, 2013(7): 147-150. [13] DONG L Q, DENG R J, XIAO H Y, et al. Hierarchical polydopamine coated cellulose nanocrystal micro- structures as efficient nanoadsorbents for removal of Cr(VI) ions[J]. Cellulose, 2019, 26(11): 6401-6414. [14] TRAN T H, OKABE H, HIDAKA Y, et al. Removal of metal ions from aqueous solutions using carboxymethyl cellulose/sodium styrene sulfonate gels prepared by radiation grafting[J]. Carbohydrate Polymers, 2017, 157: 335-343. [15] CRINI G. Recent developments in polysaccharide- based materials used as adsorbents in wastewater treatment[J]. Progress in Polymer Science, 2005, 30(1): 38-70. [16] FAN H L, MA X Z, ZHOU S F, et al. Highly efficient removal of heavy metal ions by carboxymethyl cellulose- immobilized Fe3O4 nanoparticles prepared via high-gravity technology[J]. Carbohydrate Polymers, 2019, 213: 39-49. [17] LEI C, GAO J K, REN W J, et al. Fabrication of metal-organic frameworks@cellulose aerogels composite materials for removal of heavy metal ions in water[J]. Carbohydrate Polymers, 2019, 205: 35-41. [18] BO S G, REN W J, LEI C, et al. Flexible and porous cellulose aerogels/zeolitic imidazolate framework (ZIF-8) hybrids for adsorption removal of Cr(IV) from water[J]. Journal of Solid State Chemistry, 2018, 262: 135-141. [19] MUNIM S A, SADDIQUE M T, RAZA Z A, et al. Fabrication of cellulose-mediated chitosan adsorbent beads and their surface chemical characterization[J]. Polymer Bulletin, 2020, 77(1): 183-196. [20] 吴俊杰. 天然纤维素复合功能材料的结构调控及性质研究[D]. 湘潭:湘潭大学, 2010. [21] 张静, 林胜利. 纤维素选择性氧化研究进展[J]. 纤维素科学与技术, 2014, 22(2): 69-77. [22] LIU S P, CHENG G, XIONG Y, et al. Adsorption of low concentrations of bromide ions from water by cellulose-based beads modified with TEMPO- mediated oxidation and Fe(III) complexation[J]. Journal of Hazardous Materials, 2020, 384: 121195. [23] LI M Y, MESSELE S A, BOLUK Y, et al. Isolated cellulose nanofibers for Cu (II) and Zn (II) removal: performance and mechanisms[J]. Carbohydrate Polymers, 2019, 221: 231-241. [24] FIOL N, V?SQUEZ M G, PEREIRA M, et al. TEMPO- oxidized cellulose nanofibers as potential Cu(II) adsorbent for wastewater treatment[J]. Cellulose, 2018, 26(2): 903-916. [25] GENG B Y, WANG H Y, WU S, et al. Surface- tailored nanocellulose aerogels with thiol-functional moieties for highly efficient and selective removal of Hg(II) ions from water[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(12): 11715-11726. [26] 吴晓杰, 李东, 王淑颖, 等. 2,3-二醛基纤维素还原反应条件的优化及产物表征[J]. 塑料科技, 2019, 47(10): 17-22. [27] AHMAD M, MANZOOR K, AHMAD S, et al. Preparation, kinetics, thermodynamics, and mechanism evaluation of thiosemicarbazide modified green carboxymethyl cellulose as an efficient Cu(II) adsorbent[J]. Journal of Chemical & Engineering Data, 2018, 63(6): 1905-1916. [28] 张俐娜. 天然高分子科学与材料[M]. 北京:科学出版社, 2007. [29] HUANG J, YE M, QU Y Q, et al. Pb (II) removal from aqueous media by EDTA-modified mesoporous silica SBA-15[J]. Journal of Colloid and Interface Science, 2012, 385(1):137-146. [30] KARDAM A, RAJ K R, SRIVASTAVA S, et al. Nanocellulose fibers for biosorption of cadmium, nickel, and lead ions from aqueous solution[J]. Clean Technologies & Environmental Policy, 2013, 16(2): 385-393. [31] GUPTA A D, PANDEY S, JAISWAL V K, et al. Simultaneous oxidation and esterification of cellulose for use in treatment of water containing Cu(II) ions[J]. Carbohydrate Polymers, 2019, 222: 114964. [32] ZHANG C Z, SU J J, ZHU H X, et al. The removal of heavy metal ions from aqueous solutions by amine functionalized cellulose pretreated with microwave- H2O2[J]. RSC Advances, 2017, 7(54): 34182- 34191. [33] LUO X G, YUAN J, LIU Y G, et al. Improved solid- phase synthesis of phosphorylated cellulose microsphere adsorbents for highly effective Pb2+ removal from water: batch and fixed-bed column performance and adsorption mechanism[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(6): 5108-5117. [34] GERICKE M, TRYGG J, FARDIM P. Functional cellulose beads: preparation, characterization, and applications[J]. Chemical Reviews, 2013, 113(7): 4812-4836. [35] WANG J, LIU M, DUAN C, et al. Preparation and characterization of cellulose-based adsorbent and its application in heavy metal ions removal[J]. Carbohydrate Polymers, 2019, 206: 837-843. [36] WANG J, DANG M, DUAN C, et al. Carboxy- methylated cellulose fibers as low-cost and renewable adsorbent materials[J]. Industrial & Engineering Chemistry Research, 2017, 56(51): 14940-14948. [37] GE H, HUANG H L, XU M, et al. Cellulose/poly (ethylene imine) composites as efficient and reusable adsorbents for heavy metal ions[J]. Cellulose, 2016, 23(4): 2527-2537. [38] ZHANG J, XUE C H, MA H R, et al. Fabrication of PAN electrospun nanofibers modified by tannin for effective removal of trace Cr(III) in organic complex from wastewater[J]. Polymers, 2020, 12(1): 210. [39] SANTOS S C R, BACELO H A M, BOAVENTURA R A R, et al. Tannin-adsorbents for water deconta- mination and for the recovery of critical metals: current state and future perspectives[J]. Biotechnology Journal, 2019, 14(12): 1900060. [40] ZHOU P, YUAN H, OU L J, et al. Removal of Cd(II) and Cu(II) ions from aqueous solutions using tannin- phenolic polymer immobilized on cellulose[J]. Journal of Macromolecular Science Part A-Pure and Applied Chemistry, 2019, 56(7): 717-722. [41] CHEN X, ZHOU S K, ZHANG L M, et al. Adsorption of heavy metals by graphene oxide/cellulose hydrogel prepared from NaOH/Urea aqueous solution[J]. Materials, 2016, 9(7): 582. [42] KANG H L, LIU R G, HUANG Y. Graft modification of cellulose: methods, properties and applications[J]. Polymer, 2015, 70: A1-A16. [43] KUMAR R, SHARMA R K, SINGH A P. Removal of organic dyes and metal ions by cross-linked graft copolymers of cellulose obtained from the agricultural residue[J]. Journal of Environmental Chemical Engineering, 2018, 6(5): 6037-6048. [44] ZHANG M Y, SONG L H, JIANG H F, et al. Biomass based hydrogel as an adsorbent for the fast removal of heavy metal ions from aqueous solutions[J]. Journal of Materials Chemistry A, 2017, 5(7): 3434-3446. [45] LI Z M, TIAN H, YUAN Y Y, et al. Metal-ion- imprinted thermo-responsive materials obtained from bacterial cellulose: synthesis, characterization, and adsorption evaluation[J]. Journal of Materials Chemistry A, 2019, 7(19): 11742-11755. [46] RAHMAN M L, MANDAL H B, SARKAR S M, et al. Synthesis of tapioca cellulose-based poly(hydroxamic acid) ligand for heavy metals removal from water[J]. Journal of Macromolecular Science Part A-Pure and Applied Chemistry, 2016, 53(8): 515-522. [47] FAKHRE N A, IBRAHIM B M. The use of new chemically modified cellulose for heavy metal ion adsorption[J]. Journal of Hazardous Materials, 2018, 343: 324-331. [48] TANG J T, SONG Y, ZHAO F P, et al. Compressible cellulose nanofibril (CNF) based aerogels produced via a bio-inspired strategy for heavy metal ion and dye removal[J]. Carbohydrate Polymers, 2019, 208: 404-412. [49] TIAN C H, SHE J R, WU Y Q, et al. Reusable and cross-linked cellulose nanofibrils aerogel for the removal of heavy metal ions[J]. Polymer Composites, 2017, 39(12): 4442-4451. [50] SUN J T, LIU X L, WANG L L, et al. Enhanced reinforcement efficiency in a hybrid microcrystalline cellulose-SiO2 filler for the tire tread composites[J]. Journal of Sol-Gel Science & Technology, 2017, 85(1): 213-220. [51] PRAMUAL K, INTASANTA V,CHIRACHANCHAI S, et al. Urethane-linked imidazole-cellulose micro- crystals: synthesis and their dual functions in adsorption and naked eye sensing with colorimetric enhancement of metal ions[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(3): 3686-3695. [52] TANG J T, SISLER J, GRISHKEWICH N, et al. Functionalization of cellulose nanocrystals for advanced applications[J]. Journal of Colloid & Interface Science, 2017, 494: 397-409.[53] SONG K L, QIAN X N, LI X Y, et al. Fabrication of a novel functional CNC cross-linked and reinforced adsorbent from feather biomass for efficient metal removal[J]. Carbohydrate Polymers, 2019, 222: 115016. [54] 彭帅. 磁性多孔纤维素微球的制备与应用研究[D]. 广州:华南理工大学, 2014. [55] LUO X G, LEI X J, XIE X P, et al. Adsorptive removal of lead from water by the effective and reusable magnetic cellulose nanocomposite beads entrapping activated bentonite[J]. Carbohydrate Polymers, 2016, 151: 640-648. [56] SRIVASTAVA N, THAKUR A K, SHAHI V K. Phosphorylated cellulose triacetate-silica composite adsorbent for recovery of heavy metal ion[J]. Carbohydrate Polymers, 2016, 136: 1315-1322.

相似文献/References:

[1]陈树存,薛俊,李晶,等.一种简单的制备碳包覆金属Co纳米粒子的方法[J].武汉工程大学学报,2009,(03):52.
 CHEN Shu Cun,XUE Jun,LI Jing,et al.A simple and novel method of preparation carbon encapsulated Co nanoparticles[J].Journal of Wuhan Institute of Technology,2009,(04):52.
[2]郭俊芳,鄢国平,郑华明.Sm(HTH)3Phen在改性MCM41中的组装及发光性质[J].武汉工程大学学报,2011,(07):60.
 GUO Junfang,YAN Guoping,ZHENG Huaming.Incorporation of rareearth complex Sm(HTH)3Phen into surfacemodified MCM41 and their photophysical properties[J].Journal of Wuhan Institute of Technology,2011,(04):60.
[3]董桂芳,官仕龙*,程锐,等.卷烟胶的合成及影响因素[J].武汉工程大学学报,2011,(09):26.
 DONG Guifang,GUAN Shilong*,CHENG Rui,et al.Synthesis of cigarette adhesive and factors of affecting its performance[J].Journal of Wuhan Institute of Technology,2011,(04):26.
[4]张勇,朱永昌,李俊,等.废玻璃改性氯氧镁水泥的研究[J].武汉工程大学学报,2011,(10):57.
 ZHANG Yong,ZHU Yong chang,LI Jun,et al.Research on magnesium oxygenchloride cement modified by waste glass[J].Journal of Wuhan Institute of Technology,2011,(04):57.
[5]李铭,汪艳,胡吉良,等.水性环氧树脂改性水泥力学性能[J].武汉工程大学学报,2011,(11):52.
 LI Ming,WANG Yan,HU Ji liang,et al.Mechanical properties of waterborne epoxyresin modified concrete material[J].Journal of Wuhan Institute of Technology,2011,(04):52.
[6]马文梅,王营茹,明银安*,等.锂盐改性累托石处理染料废水[J].武汉工程大学学报,2012,(2):19.
 MA Wen\|mei,WANG Ying\|ru,MING Yin\|an,et al.Dye wastewater treatment by rectorite modified by lithium[J].Journal of Wuhan Institute of Technology,2012,(04):19.
[7]张晖,赖小莹*,艾常春,等.聚磷酸铵的合成及改性研究进展[J].武汉工程大学学报,2012,(10):32.[doi:103969/jissn16742869201210008]
 ZHANG Hui,LAI Xiao ying,AI Chang chun,et al.Development on synthesis and modification of APPⅡ[J].Journal of Wuhan Institute of Technology,2012,(04):32.[doi:103969/jissn16742869201210008]
[8]柏正武,徐小琴,金芬芬,等.纤维素二氧化硅复合颗粒的制备与表征[J].武汉工程大学学报,2013,(02):11.[doi:103969/jissn16742869201302003]
 BAI Zheng wu,XU Xiao qin,JIN Fen fen,et al.Preparation and characterization of celluloseSiO2 composite beads[J].Journal of Wuhan Institute of Technology,2013,(04):11.[doi:103969/jissn16742869201302003]
[9]陈瑞,朱圣东,杨武,等.竹子化学成分的测定[J].武汉工程大学学报,2013,(02):57.[doi:103969/jissn16742869201302012]
 CHEN Rui,ZHU Sheng dong,YANG Wu,et al.Analysis of chemical components of bamboo[J].Journal of Wuhan Institute of Technology,2013,(04):57.[doi:103969/jissn16742869201302012]
[10]张富青,陈晓霞,袁军,等.纳米碳酸钙对回收丙烯腈\|丁二烯\|苯乙烯共聚物性能的影响[J].武汉工程大学学报,2013,(09):59.[doi:103969/jissn167428692013090012]
 ZHANG Fu\|qing,Chen Xiao\|xia,Yuan Jun,et al.Effect of nano calcium carbonate on mechanical properties of recycled acrylonitrile\|butadiene\|styrene copolymer[J].Journal of Wuhan Institute of Technology,2013,(04):59.[doi:103969/jissn167428692013090012]

备注/Memo

备注/Memo:
收稿日期:2019-10-16作者简介:邓 杭,硕士研究生。E-mail:denghang7740@gmail.com*通讯作者:沈 陟,博士。E-mail:shenzhi20121111@163.com引文格式:邓杭,沈喜洲,沈陟. 纤维素基吸附剂对重金属离子吸附的研究进展[J]. 武汉工程大学学报,2020,42(4):377-389.
更新日期/Last Update: 2020-08-13