|本期目录/Table of Contents|

[1]王 锐,杨 浩*.平滑处理和扫描范围对多孔膜原子力显微镜分析的影响[J].武汉工程大学学报,2015,37(07):34-39.[doi:10. 3969/j. issn. 1674-2869. 2015. 07.008]
 .Influence of flattening and scan size on surface analysis of porous film using atomic force microscopy[J].Journal of Wuhan Institute of Technology,2015,37(07):34-39.[doi:10. 3969/j. issn. 1674-2869. 2015. 07.008]
点击复制

平滑处理和扫描范围对多孔膜原子力显微镜分析的影响(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
37
期数:
2015年07期
页码:
34-39
栏目:
化学与化学工程
出版日期:
2015-07-31

文章信息/Info

Title:
Influence of flattening and scan size on surface analysis of porous film using atomic force microscopy
文章编号:
1674-2869(2015)07-0034-06
作者:
王 锐杨 浩*
武汉工程大学化工与制药学院,湖北 武汉 430074
Author(s):
WANG Rui YANG Hao
School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430074, China
关键词:
原子力显微镜平滑处理扫描范围多孔膜表面粗糙度
Keywords:
atomic force microscopy flattening scan size porous film surface roughness
分类号:
O04-34;TH742.9
DOI:
10. 3969/j. issn. 1674-2869. 2015. 07.008
文献标志码:
A
摘要:
原子力显微镜(AFM)能获得材料表面形貌、三维图、表面粗糙度等信息,是定量分析材料表面的主要工具之一. 以自制的多孔膜为研究对象,通过对AFM图像的平滑处理以及改变扫描范围,系统研究了上述因素对多孔膜孔深和表面粗糙度参数测量的影响. 结果表明,多孔膜的AFM图像经平滑处理后局部会发生扭曲,多孔部分与膜之间的界限变得模糊,使孔深测量偏差较大,不能完全反映膜的表面微观结构. 当扫描范围较小时(≤2 ?滋m×2 ?滋m),孔深和表面粗糙度参数测量的相对误差较小,而不同扫描范围下得到的表面粗糙度参数的相对标准偏差有较大差异. 最大高度和最大孔深的相对标准偏差达到了25%以上,平均粗糙度和均方根粗糙度相对标准偏差在15%左右,而平均最大孔深的相对标准偏差小于3.5%.
Abstract:
Atomic force microscopy (AFM) is one of the powerful instruments which can acquire information about surface morphology, three-dimensional (3D) image and surface roughness of materials. Taking home-made chitosan porous film as the research object, the influences of scan size and flattening of the AFM image on the measurement of morphology, pore depth and surface roughness parameters were systematically studied. The results show that AFM images, which are locally smooth, fluctuate overall at larger scan size. Besides, AFM images distort partially after they have been flatten, and the boundaries between the pore and the film become blurry, which enlarges the deviation of the measured pore depth and obscures the real surface microstructures. The relative errors of the pore depth decrease dramatically with the reduction of the scan size, and they are smaller at minor scan sizes of ≤2 ?滋m×2 ?滋m. Meanwhile, flattening the AFM images decreases the accuracy of the pore depth. With regard to various surface roughness parameters, their relative standard deviations show significant differences under variant scan sizes. The relative standard deviation of max high and max peak is over 25%, and that of mean roughness and root mean square roughness is about 15%. Nevertheless, the relative standard deviation of average max depth is less than 3.5%.

参考文献/References:

[1] MULLER D J,DUFRENE Y F. Atomic force microscopy:a nanoscopic window on the cell surface[J]. Trends Cell Biol, 2011, 21(8): 461-469.[2] 杨浩, 宋涛, 赵慧平, 等. 大肠杆菌在原子力显微镜下的观测及其形貌[J]. 武汉工程大学学报, 2012, 34(12):8-12.YANG Hao, SONG Tao, ZHAO Hui-ping, et al. Imaing and morphology of Escherichia coli using atomic force microscopy[J]. J Wuhan Inst Tech, 2012, 34(12):8-12. (in Chinese)[3] WONG P C Y, KWON Y N, CRIDDLE C S. Use of atomic force microscopy and fractal geometry to characterize the roughness of nano-, micro-, and ultrafiltration membranes[J]. J Membr Sci, 2009, 340(1-2): 117-132.[4] 江川, 汪建华, 熊礼威, 等. 基片温度对纳米金刚石薄膜制备的影响[J]. 武汉工程大学学报, 2012, 34(4): 39-42.JIANG Chun, WANG Jian-hua, XIONG Li-wei, et al. Influence of substrate temperature on preparation of nano-crystalline diamond films[J]. J Wuhan Inst Tech, 2012, 34(4):39-42. (in Chinese)[5] HOO C M, STAROSTIN N, WEST P, et al. A comparison of atomic force microscopy (AFM) and dynamic light scattering (DLS) methods to characterize nanoparticle size distributions[J]. J Nanopart Res, 2008(10):89-96.[6] ZHANG S, ANDREASEN M, NIELSEN J T, et al. Coexistence of ribbon and helical fibrils originating from hIAPP(20-29) revealed by quantitative nanomechanical atomic force microscopy[J]. Proc Natl Acad Sci U S A, 2013, 110(8): 2798-2803.[7] KATAN A J, DEKKER C. High-speed AFM reveals the dynamics of single biomolecules at the nanometer scale[J]. Cell, 2011, 147(5): 979-982.[8] ZHANG J, CHEN P C, YUAN B K, et al. Real-space identification of intermolecular bonding with atomic force microscopy[J]. Science, 2013, 342(6158): 611-614.[9] KAVEI G, ZARE Y, GHEIDARI A M. Evaluation of surface roughness and nanostructure of indium tin oxide (ITO) films by atomic force microscopy[J]. Scanning, 2008, 30(3): 232-239.[10] ZHANG W, STACK A G, CHEN Y S. Interaction force measurement between E. coli cells and nanoparticles immobilized surfaces by using AFM[J]. Colloids Surf B-Biointerfaces, 2011, 82(2): 316-324.[11] JAGER J, MOOSBURGER-WILL J, HORN S. Determination of nano-roughness of carbon fibers by atomic force microscopy[J]. J Mater Sci, 2013, 48(19): 6803-6810.[12] MUKHERJEE R, CHAUDHURY K, DAS S, et al. Posterior capsular opacification and intraocular lens surface micro-roughness characteristics: An atomic force microscopy study[J]. Micron, 2012, 43(9): 937-947.[13] DA SILVA M A B, FARDIN A B, de Vasconcellos R C C, et al. Analysis of roughness and surface hardness of a dental composite using atomic force microscopy and microhardness testing[J]. Microsc Microanal, 2011, 17(3): 446-451.[14] SANTOS R P, ARRUDA T T P, CARVALHO C B M, et al. Correlation between Enterococcus faecalis biofilms development stage and quantitative surface roughness using atomic force microscopy[J]. Microsc Microanal, 2008, 14(2): 150-158.[15] GIRASOLE M, POMPEO G, CRICENTI A, et al. The how, when, and why of the aging signals appearing on the human erythrocyte membrane: an atomic force microscopy study of surface roughness[J]. Nanomedicine-Nanotechnology Biology and Medicine, 2010, 6(6): 760-768.[16] EVES B J, GREEN R G. Limitations on accurate shape determination using amplitude modulation atomic force microscopy[J]. Ultramicroscopy, 2012, 115:14-20.[17] HRISTU R, STANCIU S G, STANCIU G A, et al. Influence of atomic force microscopy acquisition parameters on thin film roughness analysis[J]. Microsc Res Tech,2012, 75(7): 921-927.[18] WANG C M, ITOH H. Evaluation of errors in the measurement of surface roughness at high spatial frequency by atomic force microscopy on a thin film[J]. Jpn J Appl Phys,2012,51(8):08KB11-08KB11-5.[19] 李家文, 陈宇航, 黄文浩. AFM扫描参数对表面粗糙度测量的影响分析[J]. 电子显微学报, 2007, 26(1):32-35.LI Jia-wen, CHEN Yu-hang, HUANG Wen-hao. Study on the scanning parameters affecting surface roughness measurements by AFM[J]. J Chin Electr Microsc Soc, 2007, 26(1):32-35.(in Chinese)[20] 王子仪, 张荣君, 郑玉祥,等. AFM扫描参数对样品粗糙度测量的影响[J]. 实验室研究与探索, 2013, 32(2): 5-7.WANG Zi-yi, ZHANG Rong-jun, ZHENG Yu-xiang, et al. Influence of AFM scanning prarameters on surface roughness measurement[J]. Res Explor Lab, 2013, 32(2): 5-7. (in Chinese)[21] LOPARIC M, WIRZ D, DANIELS A U, et al. Micro- and nanomechanical analysis of articular cartilage by indentation-type atomic force microscopy: Validation with a gel-microfiber composite[J]. Biophys J, 2010, 98(11): 2731-2740.[22] MENDEZ-VILAS A, BRUQUE J M, GONZALEZ-MARTIN M L . Sensitivity of surface roughness parameters to changes in the density of scanning points in multi-scale AFM studies. Application to a biomaterial surface[J]. Ultramicroscopy,2007,107(8):617-625.[23] ANTONIO P D, LASALVIA M, PERNA G, et al. Scale-independent roughness value of cell membranes studied by means of AFM technique[J]. Biochim Biophys Acta-Biomembr, 2012, 1818(12): 3141-3148.

相似文献/References:

[1]杨浩,宋涛,赵慧平,等.大肠杆菌在原子力显微镜下的观测及其形貌[J].武汉工程大学学报,2012,(12):8.[doi:103969/jissn16742869201212003]
 YANG Hao,SONG Tao,ZHAO Hui ping,et al.Imaging and morphology of Escherichia coli using atomic force microscopy[J].Journal of Wuhan Institute of Technology,2012,(07):8.[doi:103969/jissn16742869201212003]

备注/Memo

备注/Memo:
收稿日期:2015-05-05基金项目:国家自然科学基金项目(21201135);湖北省教育厅科学技术研究计划中青年人才项目(Q20121502);武汉工程大学第九期大学生校长基金(2014019)作者简介:王锐(1993-),男,湖北天门人,本科,研究方向:功能界面材料.* 通信联系人
更新日期/Last Update: 2015-08-26