|本期目录/Table of Contents|

[1]赖作通.三热源热布朗热变换器的生态学性能优化[J].武汉工程大学学报,2024,46(04):370-374.[doi:10.19843/j.cnki.CN42-1779/TQ.202404037]
 LAI Zuotong.Optimization of ecological performance of three-heat-reservoirthermal Brownian heat transformer [J].Journal of Wuhan Institute of Technology,2024,46(04):370-374.[doi:10.19843/j.cnki.CN42-1779/TQ.202404037]
点击复制

三热源热布朗热变换器的生态学性能优化(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
46
期数:
2024年04期
页码:
370-374
栏目:
化学与化学工程
出版日期:
2024-08-28

文章信息/Info

Title:
Optimization of ecological performance of three-heat-reservoir
thermal Brownian heat transformer
文章编号:
1674 - 2869(2024)04 - 0370 - 05
作者:
赖作通
中国石油化工股份有限公司茂名分公司,广东 茂名 525000
Author(s):
LAI Zuotong
Maoming Branch of China Petroleum & Chemical Corporation, Maoming 525000, China
关键词:
三热源热变换器热布朗马达供热率供热系数生态学函数性能优化
Keywords:
three-heat-reservoir heat transformer thermal Brownian motor heating load coefficient of performance ecological function performance optimization
分类号:
TK1
DOI:
10.19843/j.cnki.CN42-1779/TQ.202404037
文献标志码:
A
摘要:
基于?分析的生态学函数,研究了三热源热布朗热变换器循环的生态学性能。导出了生态学函数的解析式,并研究了循环在最大生态学函数目标下的供热率和供热系数特性。通过与供热率目标下的性能进行比较,说明了生态学函数作为优化目标时三热源热布朗热变换器的性能优势。结果表明:通过调整势垒高度和外力,可使三热源热布朗热变换器工作在最大生态学函数目标下。当以生态学函数代替供热率作为优化目标时,三热源热布朗热变换器可以以牺牲较小的供热率为代价,换取供热系数的较大提升。
Abstract:
With the exergy-based ecological function, we studied the ecological performance of three-heat-reservoir thermal Brownian heat transformer. An expression of ecological function was derived, and the heating load and coefficient of performance (COP) of cycle under maximal ecological function criteria were studied. The performance advantages of three-heat-reservoir thermal Brownian heat transformer with ecological function as optimization objective were shown by comparing with the performance under heating load objective. The results show that the three-heat-reservoir thermal Brownian heat transformer can operate under the maximum ecological function objective by adjusting potiential barrier height and external force; and when the heating load is replaced by ecological function as optimization objective, the COP of the three-heat-reservoir thermal Brownian heat transformer can be greatly improved at the expense of a smaller heating load.

参考文献/References:

[1] YANG S, DENG C W, LIU Z Q. Optimal design and analysis of a cascade LiBr/H2O absorption refrigeration/transcritical CO2 process for low-grade waste heat recovery [J]. Energy Conversion and Management, 2019, 192: 232-242.

[2] CUDOK F, GIANNETTI N, CIGANDA J, et al. Absorption heat transformer-state-of-the-art of industrial applications [J]. Renewable and Sustainable Energy Reviews, 2021, 141: 110757.
[3] 丁泽民, 陈林根, 王文华, 等. 三类微型能量转换系统有限时间热力学性能优化的研究进展[J]. 中国科学: 技术科学, 2015, 45(9): 889-918.
[4] LUO M,FENG Y Z,WANG T W,et al. Micro nanorobots at work in active drug delivery [J]. Advanced Functional Materials,2018,28(25): 1706100.
[5] ASFAW M, BEKELE M. Current, maximum power and optimized efficiency of a Brownian heat engine [J]. The European Physical Journal B, 2004, 38(3): 457-461.
[6] VELASCO S, ROCO J M M, MEDINA A, et al. Feynman’s ratchet optimization: maximum power and maximum efficiency regimes [J]. Journal of Physics D: Applied Physics, 2001, 34(6): 1000-1006.
[7] AI B Q, XIE H Z, WEN D H, et al. Heat flow and efficiency in a microscopic engine [J]. The European Physical Journal B, 2005, 48(1): 101-106.
[8] GAO T F, CHEN J C. Non-equilibrium thermodynamic analysis on the performance of an irreversible thermally driven Brownian motor [J]. Modern Physics Letters B, 2010, 24(3): 325-333.
[9] QI C Z, CHEN L G, DING Z M, et al. A generalized irreversible thermal Brownian motor cycle and its optimal performance [J]. The European Physical Journal Plus, 2021, 136: 1120.
[10] DING Z M, CHEN L G, SUN F R. Thermodynamic characteristic of a Brownian heat pump in a spatially periodic temperature field [J]. Science China Physics, Mechanics and Astronomy, 2010, 53(5): 876-885.
[11] DING Z M, CHEN L G, SUN F R. Generalized model and optimum performance of an irreversible thermal Brownian microscopic heat pump [J]. Mathematical and Computer Modelling, 2011, 53(5/6): 780-792.
[12] FEIDT M. Evolution of thermodynamic modelling for three and four heat reservoirs reverse cycle machines: a review and new trends [J]. International Journal of Refrigeration, 2013, 36(1): 8-23.
[13] QIN X Y, CHEN L G, GE Y L, et al. Finite time thermodynamic studies on absorption thermodynamic cycles: a state of the arts review [J]. Arabian Journal for Science and Engineering, 2013, 38(3): 405-419.
[14] CORREA L A. Multistage quantum absorption heat pumps [J]. Physical Review E,2014,89(4): 042128.
[15] PENG W L, ZHANG Y C, YANG Z M, et al. Performance evaluation and comparison of three-terminal energy selective electron devices with different connective ways and filter configurations [J]. The European Physical Journal Plus, 2018, 133(2): 1-12.
[16] QI C Z, CHEN L G, GE Y L, et al. Three-heat-reservoir thermal Brownian heat transformer and its performance limits [J]. Physica A: Statistical Mechanics and its Applications, 2023, 622:128885.
[17] ANGULO-BROWN F. An ecological optimization criterion for finite-time heat engines [J]. Journal of Applied Physics, 1991, 69(11): 7465-7469.
[18] YAN Z J. Comment on "An ecological optimization criterion for finite-time heat engines"[J. Appl. Phys. 69(11), 7465 (1991)] [J]. Journal of Applied Physics, 1993, 73(7): 3583.
[19] 陈林根, 孙丰瑞, 陈文振. 热力循环的生态学品质因素[J]. 热能动力工程, 1994, 9(6): 374-376.
[20] 金晴龙, 夏少军, 陈林根, 等. 预热型S-CO2循环生态学函数分析与优化[J]. 工程热物理学报, 2023, 44(11): 2956-2966.
[21] 齐丛正, 陈林根, 戈延林, 等. 三热源热布朗制冷机的生态学最优性能[J]. 工程热物理学报, 2023, 44(10): 2633-2638.
[22] 齐丛正, 陈林根, 戈延林. 广义不可逆热布朗马达生态学最优性能[J]. 工程热物理学报, 2022, 43(10): 2559-2564.
[23] 丁泽民, 陈林根, 戈延林, 等. 不可逆双谐振通道电子热机生态学性能优化[J]. 工程热物理学报, 2014, 35(6): 1035-1039.
[24] 秦晓勇, 陈林根, 戈延林, 等. 基于?分析的不可逆变温热源四温位吸收式热变换器循环生态学性能[J].太阳能学报, 2016, 37(11): 2849-2855.
[25] CHEN L G, SHI S S, GE Y L, et al. Ecological function performance analysis and multi-objective optimization for an endoreversible four-reservoir chemical pump [J]. Energy, 2023, 282: 128717.
[26] CHEN L G, GE Y L, QIN X Y, et al. Exergy-based ecological optimization for a four-temperatue-level absorption heat pump with heat resistance, heat leakage and internal irreversibility [J]. International Journal of Heat and Mass Transfer, 2019, 129: 855-861.
[27] 魏轩宇, 殷勇, 汪浩, 等. 量子卡诺热机有效功率优化[J]. 武汉工程大学学报, 2023, 45(3): 312-318.
[28] 丁佳, 殷勇, 陈林根, 等. 量子狄塞尔热泵循环性能分析[J]. 武汉工程大学学报, 2022, 44(1): 92-96.
[29] 刘存, 殷勇, 杨晗, 等. 不可逆量子斯特林热泵循环性能分析与优化[J]. 武汉工程大学学报, 2021, 43(2): 232-236.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2024-04-28
作者简介:赖作通,硕士,高级工程师。Email:laizt.mmsh@sinopec.com
引文格式:赖作通. 三热源热布朗热变换器的生态学性能优化[J]. 武汉工程大学学报,2024,46(4):370-374,381.
更新日期/Last Update: 2024-08-31