|本期目录/Table of Contents|

[1]薛开诚,郭 立,刘银波,等.多壁碳纳米管/还原氧化石墨烯气凝胶的水蒸发性能研究[J].武汉工程大学学报,2024,46(03):267-273.[doi:10.19843/j.cnki.CN42-1779/TQ.202306019]
 XUE Kaicheng,GUO Li,LIU Yinbo,et al.Water evaporation properties of multi-walled carbon nanotubes/reduced graphite oxide aerogel[J].Journal of Wuhan Institute of Technology,2024,46(03):267-273.[doi:10.19843/j.cnki.CN42-1779/TQ.202306019]
点击复制

多壁碳纳米管/还原氧化石墨烯气凝胶的
水蒸发性能研究
(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
46
期数:
2024年03期
页码:
267-273
栏目:
材料科学与工程
出版日期:
2024-06-30

文章信息/Info

Title:
Water evaporation properties of multi-walled carbon nanotubes/reduced graphite oxide aerogel
文章编号:
1674 - 2869(2024)03 - 0267 - 07
作者:
薛开诚郭 立刘银波付 萍*
武汉工程大学材料科学与工程学院,湖北 武汉 430205
Author(s):
XUE KaichengGUO LiLIU YinboFU Ping*
School of Materials Science and Engineering,Wuhan Institute of Technology, Wuhan 430205, China
关键词:
还原氧化石墨烯多壁碳纳米管气凝胶蒸发性能
Keywords:
reduced grapheneoxide multi-walled carbon nanotubes aerogel evaporation properties
分类号:
TB33
DOI:
10.19843/j.cnki.CN42-1779/TQ.202306019
文献标志码:
A
摘要:
石墨烯片层间由于π-π相互作用会形成堆叠结构,不利于水体传输,影响石墨烯基材料的水蒸发性能。为改善石墨烯片层间的堆叠结构,形成较多的水体传输通道,提高石墨烯基材料的水蒸发性能,在氧化石墨烯(GO)中复合不同含量的多壁碳纳米管(MWCNT),采用水热还原法得到复合水凝胶,最后利用冷冻干燥法得到多壁碳纳米管复合还原氧化石墨烯气凝胶(MWCNT/rGOA)。研究了MWCNT含量对还原氧化石墨烯气凝胶微观结构与水蒸发性能的影响,并对MWCNT/rGOA的结构和性能进行了表征。结果表明,当MWCNT含量较低(MWCNT与GO质量比为0~0.4)时,随着MWCNT含量的增加,石墨烯片层间距增大,气凝胶内部水通道更加丰富,水蒸发性能增强。随着MWCNT含量的继续增加(MWCNT与GO质量比为0.4~0.7),MWCNT大量团聚,破坏了气凝胶内部的水通道,水蒸发性能减弱。当MWCNT与GO质量比为0.4时,MWCNT/rGOA的水蒸发速率和光热转化效率均达到最大值,分别为1.75 kg/(m2·h)和91.1%。

Abstract:
Through π-π interaction, graphene sheets form a kind of stacking structure,which is not conducive to water transport and affects the water evaporation performance of graphene-based materials. To improve the stacking structure between graphene sheets for forming more water transport channels and enhancing the water evaporation performance of graphene-based materials,multi-walled carbon nanotubes (MWCNT) with different contents were compounded in graphene oxide (GO),and the composite hydrogel was prepared by a hydrothermal reduction method. Eventually,the reduced graphene oxide composite multi-walled carbon nanotube aerogel (MWCNT/rGOA) was obtained by a freeze-drying method. In this paper,the effects of MWCNT content on the microstructure and water evaporation performance of reduced graphene oxide aerogels were investigated,and the structure and properties of MWCNT/rGOA were characterized. The results show that when the MWCNT content is low (the mass ratio of MWCNT to GO is 0-0.4),the water channels inside the aerogel are more abundant,and the water evaporation performance is enhanced with the increase of MWCNT content. As the MWCNT content continues to increase (the mass ratio of MWCNT to GO is 0.4-0.7),MWCNT agglomerates in large quantities,destroying the water channels inside the aerogel,and weakening the water evaporation performance. When the mass ratio of MWCNT to GO is 0.4,the water evaporation rate and photothermal conversion efficiency of MWCNT/rGOA reach maximum values,which are 1.75 kg/(m2·h) and 91.1%,respectively.

参考文献/References:

[1] RASUL G. Food,water,and energy security in South Asia:a nexus perspective from the Hindu Kush Himalayan region [J].Environmental Science & Policy,2014,39:35-48.

[2] LIU W F, ANTONELLI M, KUMMU M, et al. Savings and losses of global water resources in food-related virtual water trade [J].WIREs:Water,2019,6(1):e1320.
[3] SCHWARZENBACH R P,EGLI T,HOFSTETTER T B,et al. Global water pollution and human health [J].Annual Review of Environment and Resources,2010,35:109-136.
[4] WANG Q,YANG Z M. Industrial water pollution,water environment treatment,and health risks in China [J]. Environmental Pollution,2016,218:358-365.
[5] ZHU L L,GAO M M,PEH C K N,et al. Recent progress in solar-driven interfacial water evaporation:advanced designs and applications [J].Nano Energy,2019,57:507-518.
[6] MENG X Y,YANG J H,RAMAKRISHNA S,et al. Gradient vertical channels within aerogels based on N-doped graphene meshes toward efficient and salt-resistant solar evaporation [J].ACS Sustainable Chemistry & Engineering,2020,8(12):4955-4965.
[7] BIENER J,STADERMANN M,SUSS M,et al. Advanced carbon aerogels for energy applications [J].Energy & Environmental Science,2011,4(3):656-667.
[8] 陈惠燕,何明宏,李亮,等.三维硫氮双掺杂石墨烯/二氧化锰复合水凝胶的制备及性能研究[J].武汉工程大学学报,2022,44(3):282-287.
[9] WANG C J,WANG L Q,LIANG W D,et al. Enhanced light-to-thermal conversion performance of all-carbon aerogels based form-stable phase change material composites [J].Journal of Colloid and Interface Science,2022,605:60-70.
[10] ERICKSON D,SINTON D,PSALTIS D. Optofluidics for energy applications [J].Nature Photonics,2011,5(10):583-590.
[11] YANG T S,LIN H,LIN K T,et al. Carbon-based absorbers for solar evaporation:steam generation and beyond [J].Sustainable Materials and Technologies,2020,25:e00182.
[12] YANG L,CHEN G L,ZHANG N,et al. Sustainable biochar-based solar absorbers for high-performance solar-driven steam generation and water purification [J].ACS Sustainable Chemistry & Engineering,2019,7(23):19311-19320.
[13] ZENG W,TAO X M,LIN S P,et al. Defect-engineered reduced graphene oxide sheets with high electric conductivity and controlled thermal conductivity for soft and flexible wearable thermoelectric generators [J]. Nano Energy,2018,54:163-174.
[14] WANG Y C,WANG C Z,SONG X J,et al. A facile nanocomposite strategy to fabricate a rGO-MWCNT photothermal layer for efficient water evaporation [J].Journal of Materials Chemistry A,2018,6(3):963-971.
[15] HU X Z,XU W C,ZHOU L,et al. Tailoring graphene oxide-based aerogels for efficient solar steam generation under one sun [J].Advanced Materials,2017,29(5):1604031.
[16] ZHANG C,REN L L,WANG X Y,et al. Graphene oxide-assisted dispersion of pristine multiwalled carbon nanotubes in aqueous media [J].The Journal of Physical Chemistry C,2010,114(26):11435-11440.
[17] LI X Q,NI G,COOPER T,et al. Measuring conversion efficiency of solar vapor generation [J].Joule,2019,3(8):1798-1803.
[18] COOPER T A,ZANDAVI S H,NI G W,et al. Contactless steam generation and superheating under one sun illumination [J].Nature Communications,2018,9:5086.
[19] ZHUANG P Y,FU H Y,XU N,et al. Free-standing reduced graphene oxide (rGO) membrane for salt-rejecting solar desalination via size effect [J].Nanophotonics,2020,9(15):4601-4608.
[20] SHILYAEVA E A,NOVAKOVSKAYA Y V. Certain features of graphite oxide functional groups as drawn from simulations and experiment [J].Structural Chemistry,2019,30:583-594.
[21] ZHANG C,DABBS D M,LIU L M,et al. Combined effects of functional groups,lattice defects,and edges in the infrared spectra of graphene oxide [J].The Journal of Physical Chemistry C,2015,119(32):18167-18176.
[22] KIM S J,PARK S J,KIM H Y,et al. Characterization of chemical doping of graphene by in-situ Raman spectroscopy [J].Applied Physics Letters,2016,108(20):203111.
[23] FERRARI A C. Raman spectroscopy of graphene and graphite:disorder,electron-phonon coupling,doping and nonadiabatic effects [J].Solid State Communications,2007,143(1/2):47-57.
[24] XU H, SONG G J, MA L C, et al. Evolution of properties and enhancement mechanism of large-scale three-dimensional graphene oxide-carbon nanotube aerogel/polystyrene nanocomposites [J].Polymer Testing,2021,97:107158.
[25] ZHANG W Y, KONG Q Q, TAO Z C, et al. 3D thermally cross-linked graphene aerogel-enhanced silicone rubber elastomer as thermal interface material [J].Advanced Materials Interfaces,2019,6(12):1900147.
[26] HUO B B, JIANG D G, CAO X Y, et al. N-doped graphene/carbon hybrid aerogels for efficient solar steam generation [J]. Carbon,2019,142:13-19.
[27] YIN X Y,ZHANG Y,GUO Q Q,et al. Macroporous double-network hydrogel for high-efficiency solar steam generation under 1 sun illumination [J].ACS Applied Materials & Interfaces,2018,10(13):10998- 11007.

相似文献/References:

[1]鲜于万新,夏致祥,田贵森,等.苯胺四聚体/还原氧化石墨烯薄膜的热电性能研究[J].武汉工程大学学报,2023,45(05):517.[doi:10.19843/j.cnki.CN42-1779/TQ.202209010]
 XIANYU Wanxin,XIA Zhixiang,TIAN Guisen,et al.Thermoelectric Properties of Aniline Tetramer/ReducedGraphene Oxide Films[J].Journal of Wuhan Institute of Technology,2023,45(03):517.[doi:10.19843/j.cnki.CN42-1779/TQ.202209010]
[2]戴 萌,薛开诚,郭 立,等.还原氧化石墨烯气凝胶水蒸发诱导发电性能的研究[J].武汉工程大学学报,2023,45(06):628.[doi:10.19843/j.cnki.CN42-1779/TQ.202211019]
 DAI Meng,XUE Kaicheng,GUO Li,et al.Water Evaporation-Induced Power Generation Performance ofReduced Graphene Oxide Aerogels[J].Journal of Wuhan Institute of Technology,2023,45(03):628.[doi:10.19843/j.cnki.CN42-1779/TQ.202211019]

备注/Memo

备注/Memo:
收稿日期:2023-06-21
基金项目:武汉工程大学第十四届研究生教育创新基金(CX2022258)
作者简介:薛开诚,硕士研究生。Email:908077027@qq.com
*通信作者:付 萍,博士,教授。Email:fuping751128@163.com
引文格式:薛开诚,郭立,刘银波,等. 多壁碳纳米管/还原氧化石墨烯气凝胶的水蒸发性能研究[J]. 武汉工程大学学报,2024,46(3):267-273.
更新日期/Last Update: 2024-07-02