|本期目录/Table of Contents|

[1]何 清,牟雨航,孟辰尧,等.CNT@Ni-MOFs的制备及其在超级电容器中的应用[J].武汉工程大学学报,2024,46(03):258-266.[doi:10.19843/j.cnki.CN42-1779/TQ.202309013]
 HE Qing,MOU Yuhang,MENG Chenyao,et al.Preparation of CNT@Ni-MOFs for application in supercapacitors[J].Journal of Wuhan Institute of Technology,2024,46(03):258-266.[doi:10.19843/j.cnki.CN42-1779/TQ.202309013]
点击复制

CNT@Ni-MOFs的制备及其在超级电容器中的应用(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
46
期数:
2024年03期
页码:
258-266
栏目:
材料科学与工程
出版日期:
2024-06-30

文章信息/Info

Title:
Preparation of CNT@Ni-MOFs for application in supercapacitors
文章编号:
1674 - 2869(2024)03 - 0258 - 09
作者:
何 清牟雨航孟辰尧张 宇刘 辉*李 亮*
武汉工程大学材料科学与工程学院,湖北 武汉 430205
Author(s):
HE Qing MOU Yuhang MENG Chenyao ZHANG Yu LIU Hui* LI Liang*
School of Materials and Engineering,Wuhan Institute of Technology,Wuhan 430205, China
关键词:
超级电容器碳纳米管金属有机骨架复合材料电极
Keywords:
supercapacitor carbon nanotubes metal-organic framework composite material electrode
分类号:
O646
DOI:
10.19843/j.cnki.CN42-1779/TQ.202309013
文献标志码:
A
摘要:
金属有机骨架(MOFs)材料因其具有较高的比表面积和结构功能多样性而在超级电容器中具有广阔的应用前景。通过溶剂热法制备电化学性能优异的碳纳米管@镍基金属有机骨架(CNT@Ni-MOFs)复合材料。使用X射线衍射、扫描电子显微镜及X射线光电子能谱对其成分和结构进行表征,研究结果表明:CNT@Ni-MOFs结构是由柔性CNT连接着棒状结构的Ni-MOFs形成的导电网络结构,其棒状结构的Ni-MOFs直径约0.5 μm,长度为4~5 μm。研究了反应时间对CNT@Ni-MOFs结构和电化学性能的影响,结果表明:当反应时间为12 h时,Ni-MOFs生长完整且均匀,Ni-MOFs颗粒数量适中且均匀负载于CNT上,同时还减少了团聚发生。CNT@Ni-MOFs复合电极具有比单独Ni-MOFs更好的比电容性能,其中CNT@Ni-MOFs12在电流密度1 A/g下的比电容达到719.8 F/g,而Ni-MOFs的比电容仅为87.1 F/g,且CNT的比电容也仅仅为43.5 F/g。此外,扫描速率为200 mV/s下,CNT@Ni-MOFs12电极材料经1 000次的线性伏安循环测试后其比电容保持率为96.8%。

Abstract:
Metal-organic frameworks (MOFs) materials have attracted considerable attention in supercapacitors (SCs), owing to their high surface area,tailorable pore sizes and shapes,and various framework architectures. In this work,carbon nanotube@nickel-based metal-organic frameworks(CNT@Ni-MOFs) composites with excellent electrochemical properties were synthesized by a solvethermal method and characterized by X-ray diffraction,scanning electron microcopy and X-ray photoelectron spectrometry. The results show that the CNT@Ni-MOFs has a conductive network structure formed by flexible CNTs connected to Ni-MOFs in a rod-like structure with a diameter of about 0.5 μm and a length of 4-5 μm. The effect of reaction time on the structure and electrochemical performance of CNT@Ni-MOFs was investigated. The results showed that when the reaction time was 12 h,the growth of Ni-MOFs was complete and uniform, and the number of Ni-MOFs particles was moderate and uniformly loaded on CNT,which reduces the occurrence of agglomeration. The CNT@Ni-MOFs composite electrode has better specific capacitance performance than Ni-MOFs alone. The CNT@Ni-MOFs12 electrode exhibited a high specific capacitance of 719.8 F/g at a current density of 1 A/g,while that of Ni-MOFs was only 87.1 F/g and that of CNT was 43.5 F/g. Meanwhile,the specific capacitance retention of CNT@Ni-MOFs12 was about 96.8% after cyclic voltammetry for 1 000 cycles at a scan rate of 200 mV/s.

参考文献/References:

[1] ELMORSHEDY M F, ELKADEEM M R, KOTB K M,et al. Optimal design and energy management of an isolated fully renewable energy system integrating batteries and supercapacitors [J]. Energy Conversion and Management,2021,245:114584.

[2] MALAMAKI K N D,CASADO-MACHADO F,BARRAGáN-VILLAREJO M,et al. Ramp-rate limitation control of distributed renewable energy sources via supercapacitors [J]. IEEE Transactions on Industry Applications,2022,58(6):7581-7594.
[3] NADERI E,BIBEK K C,ANSARI M, et al. Experimental validation of a hybrid storage framework to cope with fluctuating power of hybrid renewable energy-based systems [J]. IEEE Transactions on Energy Conversion,2021,36(3):1991-2001.
[4] ZHU D D,QIAO M,LIU J L,et al. Engineering pristine 2D metal-organic framework nanosheets for electrocatalysis [J]. Journal of Materials Chemistry A,2020,8(17):8143-8170.
[5] YUN T G,CHEN X,CHEONG J Y. Research in electrochromic supercapacitor:a focused review [J]. Batteries & Supercaps,2023,6(3):e202200454.
[6] 石文明,刘意华,吕湘连,等. 超级电容器材料及应用研究进展[J]. 微纳电子技术,2022,59(11):1105-1118.
[7] 乔亮波,张晓虎,孙现众,等. 电池-超级电容器混合储能系统研究进展[J]. 储能科学与技术,2022,11(1):98-106.
[8] 覃鑫,桂子欣,江梦云,等. 煅烧温度对类石墨相氮化碳的结构和电化学性能的影响[J]. 武汉工程大学学报,2022,44(5):528-533.
[9] CAO Z W,MOMEN R,TAO S H,et al. Metal-organic framework materials for electrochemical super-capacitors [J]. Nano-Micro Letters,2022,14(1):181.
[10] FOROUZANDEH P,KUMARAVEL V,PILLAI S C. Electrode materials for supercapacitors:a review of recent advances [J]. Catalysts,2020,10(9):969.
[11] HAN T,NAG A,CHANDRA MUKHOPADHYAY S,et al. Carbon nanotubes and its gas-sensing applications:a review [J]. Sensors and Actuators A:Physical,2019,291:107-143.
[12] MOHD NURAZZI N,ASYRAF M R M,KHALINA A,et al. Fabrication,functionalization,and application of carbon nanotube-reinforced polymer composite:an overview [J]. Polymers,2021,13(7):1047.
[13] AL-DIABAT A M, ALGADRI N A, AHMED N M,et al. Improved hydrogen gas sensing performance of carbon nanotube synthesized using microwave oven [J]. IEEE Sensors Journal,2023,23(2):1033-1041.
[14] LEVIN I,RADULESCU A,LIBERMAN L,et al. Block copolymer adsorption on the surface of multi-walled carbon nanotubes for dispersion in N,N dimethyl formamide [J]. Nanomaterials,2023,13(5):838.
[15] ZHONG M Z, ZHANG M, LI X F. Carbon nanomaterials and their composites for supercapacitors [J]. Carbon Energy,2022,4(5):950-985.
[16] LI X,TANG Y,SONG J H,et al. Self-supporting activated carbon/carbon nanotube/reduced graphene oxide flexible electrode for high performance supercapacitor [J]. Carbon,2018,129:236-244.
[17] DENG Z M,TANG P P,WU X Y,et al. Superelastic,ultralight,and conductive Ti3C2Tx MXene/acidified carbon nanotube anisotropic aerogels for electromagnetic interference shielding [J]. ACS Applied Materials & Interfaces,2021,13(17):20539-20547.
[18] SHU J C, HUANG X Y, CAO M S. Assembling 3D flower-like Co3O4-MWCNT architecture for optimizing low-frequency microwave absorption [J]. Carbon,2021,174:638-646.
[19] ZHENG B,DONG H Z,ZHU J M,et al. Molecular dynamics study of lithium intercalation into -OH functionalized carbon nanotube bundle [J]. Scientific Reports,2022,12:9847.
[20] HANI U,HUWAIMEL B,ALSUBAIYEL A M,et al. DFT study of carboplatin encapsulation interactions with carboxylated carbon nanotubes and conjugated to folic acid for targeted nano delivery systems [J]. Alexandria Engineering Journal,2023,71:501-520.
[21] ZANG X B,XU R Q,ZHANG Y Y,et al. All carbon coaxial supercapacitors based on hollow carbon nanotube sleeve structure [J]. Nanotechnology,2015,26(4):045401.
[22] SUN G Z,ZHOU J Y,YU F,et al. Electrochemical capacitive properties of CNT fibers spun from vertically aligned CNT arrays [J]. Journal of Solid State Electrochemistry,2012,16(5):1775-1780.
[23] ZHANG L, ZHENG Q W, ZHANG Z, et al. Application of metal-organic frameworks (MOFs) in environmental biosystems [J]. International Journal of Molecular Sciences,2023,24(3):2145.
[24] ADIL H I, THALJI M R, YASIN S A, et al. Metal-organic frameworks (MOFs)based nanofiber architectures for the removal of heavy metal ions [J]. RSC Advances,2022,12(3):1433-1450.
[25] XU M M, CHEN Q, XIE L H,et al. Exchange reactions in metal-organic frameworks:new advances [J]. Coordination Chemistry Reviews,2020,421:213421.
[26] MON M, BRUNO R, TIBURCIO E, et al. Multivariate metal-organic frameworks for the simultaneous capture of organic and inorganic contaminants from water [J]. Journal of the American Chemical Society,2019,141(34):13601-13609.
[27] WANG J, LI N,XU Y X, et al. Two-dimensional MOF and COF nanosheets:synthesis and applications in electrochemistry [J]. Chemistry-A European Journal,2020,26(29):6402-6422.
[28] MENG X,ZHONG R L,SONG X Z,et al. A stable,pillar-layer metal-organic framework containing uncoordinated carboxyl groups for separation of transition metal ions [J]. Chemical Communications,2014,50(48):6406-6408.
[29] LIU Y,XU X M,SHAO Z P,et al. Metal-organic frameworks derived porous carbon,metal oxides and metal sulfides-based compounds for supercapacitors application [J]. Energy Storage Materials,2020,26:1-22.
[30] WANG J, LI Y, LIU R, et al. The different roles of Ni2+/Ni3+,Ni3+/Ni4+,and Mn3+/Mn4+ in Li-rich layered nanostructured LiNixMn1-xO2·Li2MnO3 with high capacity [J]. International Journal of Electrochemical Science,2021,16(4):210425.
[31] VIJ V,SULTAN S,HARZANDI A M,et al. Nickel-based electrocatalysts for energy-related applications:oxygen reduction,oxygen evolution,and hydrogen evolution reactions [J]. ACS Catalysis,2017,7(10):7196-7225.
[32] LI Y,SHEN Y L,ZHANG Y Y,et al. A UiO-66-NH2/carbon nanotube nanocomposite for simultaneous sensing of dopamine and acetaminophen [J]. Analytica Chimica Acta,2021,1158:338419.
[33] WANG Q, GU C M, FU Y F, et al. Ultrasensitive electrochemical sensor for luteolin based on zirconium metal-organic framework UiO-66/reduced graphene oxide composite modified glass carbon electrode [J]. Molecules,2020,25(19):4557.
[34] LING P H, LEI J P, JIA L, et al. Platinum nanoparticles encapsulated metal-organic frameworks for the electrochemical detection of telomerase activity [J]. Chemical Communications,2016,52(6):1226-1229.
[35] YANG C Y, LI X Y, YU L, et al. A new promising Ni-MOF superstructure for high-performance supercapacitors [J]. Chemical Communications,2020,56(12):1803-1806.
[36] DEMESSENCE A, MESBAH A, FRAN?OIS M,et al. Structure and magnetic properties of a new 1D nickel(II) hydroxythiophenedicarboxylate [J]. European Journal of Inorganic Chemistry,2009,2009(25):3713-3720.
[37] HAN W B, ZHAO G D, ZHANG X H, et al. Graphene oxide grafted carbon fiber reinforced siliconborocarbonitride ceramics with enhanced thermal stability [J]. Carbon,2015,95:157-165.
[38] VOGT A D, HAN T, BEEBE T P. Adsorption of 11-mercaptoundecanoic acid on Ni(111) and its interaction with probe molecules [J]. Langmuir,1997,13(13):3397-3403.
[39] ARUL P,HUANG S T,GOWTHAMAN N S K,et al. Electrocatalyst based on Ni-MOF intercalated with amino acid-functionalized graphene nanoplatelets for the determination of endocrine disruptor bisphenol A [J]. Analytica Chimica Acta,2021,1150:338228.
[40] JEBAKUMAR IMMANUEL EDISON T N, ATCHUDAN R, KARTHIK N,et al. Green synthesized N-doped graphitic carbon sheets coated carbon cloth as efficient metal free electrocatalyst for hydrogen evolution reaction [J]. International Journal of Hydrogen Energy,2017,42(21):14390-14399.
[41] YUAN M W, WANG R, SUN Z M, et al. Morphology-controlled synthesis of Ni-MOFs with highly enhanced electrocatalytic performance for urea oxidation [J]. Inorganic Chemistry,2019,58(17):11449-11457.
[42] JIAO Y,CHEN G,CHEN D H,et al. Bimetal-organic framework assisted polymerization of pyrrole involving air oxidant to prepare composite electrodes for portable energy storage [J]. Journal of Materials Chemistry A,2017,5(45):23744-23752.

相似文献/References:

[1]杨平,李兰芳,蔡惠,等.双酚A在聚茜素红/碳纳米管电极上的伏安行为[J].武汉工程大学学报,2010,(11):18.[doi:10.3969/j.issn.16742869.2010.11.005]
 YANG Ping,LI Lan fang,CAI Hui,et al.Voltammetric behavior of bisphenol A on poly (alizarin red)/MWCNTs/GC composite modified electrode[J].Journal of Wuhan Institute of Technology,2010,(03):18.[doi:10.3969/j.issn.16742869.2010.11.005]
[2]杜飞鹏,王晶晶,叶恩洲,等.窄分布Ag纳米粒子担载碳纳米管检测过氧化氢[J].武汉工程大学学报,2011,(10):61.
 DU Fei peng,WANG Jing jing,et al.Narrow size distribution silver nanoparticle loaded carbon nanotubesfor hydrogen peroxide determination[J].Journal of Wuhan Institute of Technology,2011,(03):61.
[3]魏端丽,熊惠之,朱珍妮,等.二氧化锰/碳纳米管/聚吡咯复合材料的制备及性能[J].武汉工程大学学报,2017,39(02):164.[doi:10. 3969/j. issn. 1674 2869. 2017. 02. 011]
 WEI Duanli,XIONG Huizhi,ZHU Zhenni,et al.Synthesis and Properties of MnO2/Carbon Nanotube/Polypyrrole Composites[J].Journal of Wuhan Institute of Technology,2017,39(03):164.[doi:10. 3969/j. issn. 1674 2869. 2017. 02. 011]
[4]饶 曦,吴艳光,杜飞鹏*.碳纳米管/地质聚合物复合材料的制备及性能研究[J].武汉工程大学学报,2018,40(04):415.[doi:10. 3969/j. issn. 1674?2869. 2018. 04. 013]
 RAO Xi,WU Yanguang,DU Feipeng*.Preparation and Properties of Carbon Nanotubes/Geopolymer Composites[J].Journal of Wuhan Institute of Technology,2018,40(03):415.[doi:10. 3969/j. issn. 1674?2869. 2018. 04. 013]
[5]李思博,何明宏,刘玉兰,等.碳化鸡蛋膜/碳纳米管/二氧化锰复合材料的制备与性能[J].武汉工程大学学报,2020,42(04):401.[doi:10.19843/j.cnki.CN42-1779/TQ.201909025]
 LI Sibo,HE Minghong,LIU Yulan,et al.Synthesis of Carbonized Eggshell Membrane/Carbon Nanotubes/Manganese Dioxide Composite and Their Performances[J].Journal of Wuhan Institute of Technology,2020,42(03):401.[doi:10.19843/j.cnki.CN42-1779/TQ.201909025]
[6]许 杰,杜寒威,张 桥,等.磷掺杂还原氧化石墨烯/聚苯胺复合水凝胶的制备及性能研究[J].武汉工程大学学报,2023,45(04):407.[doi:10.19843/j.cnki.CN42-1779/TQ.202203015]
 XU Jie,DU Hanwei,ZHANG Qiao,et al.Preparation and Performance of Phosphorus-Doped ReducedGraphene Oxide/Polyaniline Composite Hydrogel[J].Journal of Wuhan Institute of Technology,2023,45(03):407.[doi:10.19843/j.cnki.CN42-1779/TQ.202203015]

备注/Memo

备注/Memo:
收稿日期:2023-09-22
基金项目:湖北省教育厅科学研究计划项目(D20181507);武汉工程大学科学研究基金(K201509,K201805);武汉工程大学研究生教育创新基金(CX2022212)
作者简介:何 清,硕士研究生。Email:596701676@qq.com
*通信作者:刘 辉,博士,副教授。Email:iamliuhui@live.cn
李 亮,博士,教授。Email:msell08@wit.edu.cn
引文格式:何清,牟雨航,孟辰尧,等. CNT@Ni-MOFs的制备及其在超级电容器中的应用[J]. 武汉工程大学学报,2024,46(3):258-266.
更新日期/Last Update: 2024-07-02