|本期目录/Table of Contents|

[1]刘 畅,徐和平,王永靖,等.NiMn MOF尿素氧化辅助电解海水的研究[J].武汉工程大学学报,2024,46(03):244-249.[doi:10.19843/j.cnki.CN42-1779/TQ.202403006]
 LIU Chang,XU Heping,WANG Yongjing,et al.Seawater electrolysis assisted by NiMn MOF-mediated urea oxidation[J].Journal of Wuhan Institute of Technology,2024,46(03):244-249.[doi:10.19843/j.cnki.CN42-1779/TQ.202403006]
点击复制

NiMn MOF尿素氧化辅助电解海水的研究(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
46
期数:
2024年03期
页码:
244-249
栏目:
化学与化学工程
出版日期:
2024-06-30

文章信息/Info

Title:
Seawater electrolysis assisted by NiMn MOF-mediated urea oxidation
文章编号:
1674 - 2869(2024)03 - 0244 - 06
作者:
刘 畅徐和平王永靖李梦圆项 坤*江吉周王海涛邹 菁*
武汉工程大学化学与环境工程学院,湖北 武汉 430205
Author(s):
LIU ChangXU HepingWANG YongjingLI MengyuanXIANG Kun*
School of Chemical Engineering and Pharmacy,Wuhan Institute of Technology, Wuhan 430205, China
关键词:
电解海水尿素氧化反应水热法稳定性
Keywords:
electrolysis of seawater urea oxidation reaction hydrothermal method stability
分类号:
O646
DOI:
10.19843/j.cnki.CN42-1779/TQ.202403006
文献标志码:
A
摘要:
为解决海水电解过程中氯离子对电极的腐蚀与析氯竞争反应的问题,通过水热法和退火处理在泡沫镍上制得一种耐腐蚀的NiMn MOF-300/NF来作为尿素氧化的电催化剂,并利用氧化电位更低的尿素氧化反应来代替阳极氧化反应,可有效抑制析氯反应并显著降低海水电解能耗。该催化剂在200 mA/cm2的电流密度下所需电位仅为1.37 V,比单纯电解海水的过电位低340 mV,在50 mA/cm2的电流密度下可连续反应48 h而催化性能无明显衰减,展现出优良的电催化活性与稳定性。该方法为海水电解的大规模实际应用提供了新的思路。

Abstract:
To address the issues of electrode corrosion caused by chloride ions and chlorine evolution reaction during seawater electrolysis, a corrosion-resistant NiMn MOF-300/NF on nickel foam was created through hydrothermal and annealing processes. This material was used as an electrocatalyst for urea oxidation, which has a lower oxidation potential compared to anodic oxidation. By utilizing urea oxidation, the chlorine evolution reaction was effectively suppressed, leading to a significant reduction in energy consumption during seawater electrolysis. The catalyst exhibits a voltage requirement of only 1.37 V at a current density of 200 mA/cm2,which is 340 mV lower than the overpotential observed in seawater electrolysis alone. Furthermore, the catalyst demonstrates exceptional electrocatalytic activity and stability, as it can sustain the reaction continuously for 48 hours at a current density of 50 mA/cm2 without any noticeable decrease in performance. This approach provides new insights for the practical implementation of large-scale seawater electrolysis.

参考文献/References:

[1] 王东,杨圣雄,肖健,等. 用于电解水制氢的MXene基电催化剂的研究进展[J]. 武汉工程大学学报,2023,45(4):364-377.

[2] WANG Z K, WANG C, YE L, et al. MnOx film-coated NiFe-LDH nanosheets on Ni foam as selective oxygen evolution electrocatalysts for alkaline seawater oxidation[J]. Inorganic Chemistry, 2022, 61(38): 15256-15265.
[3] ZHOU Q, LIAO L L, ZHOU H Q, et al. Innovative strategies in design of transition metal-based catalysts for large-current-density alkaline water/seawater electrolysis[J]. Materials Today Physics,2022,26: 100727.
[4] 关亚峰,朱胜利,李朝阳,等. 耐蚀镍基催化剂的制备及电解海水性能的研究[J]. 功能材料,2023,54(9):9001-9006,9021.
[5] YU L, ZHU Q, SONG S W, et al. Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis[J]. Nature Communications, 2019, 10(1): 5106.
[6] WU L, YU L, ZHANG F H, et al. Heterogeneous bimetallic phosphide Ni2P-Fe2P as an efficient bifunctional catalyst for water/seawater splitting[J]. Advanced Functional Materials, 2021, 31(1): 2006484.
[7] DRESP S, DIONIGI F, LOOS S, et al. Direct electrolytic splitting of seawater: activity, selectivity, degradation, and recovery studied from the molecular catalyst structure to the electrolyzer cell level[J]. Advanced Energy Materials, 2018, 8(22): 1800338.
[8] KUANG Y, KENNEY M J, MENG Y, et al. Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels[J]. Proceedings of the National Academy of Sciences,2019, 116(14): 6624-6629.
[9] LU X Y, PAN J, LOVELL E, et al. A sea-change: manganese doped nickel/nickel oxide electrocatalysts for hydrogen generation from seawater[J]. Energy & Environmental Science, 2018, 11(7): 1898-1910.
[10] XIE L S, LIU Q, LUO Y, et al. Bimetallic NiCoP nanosheets array for high‐performance urea electro‐oxidation and less energy‐intensive electrolytic hydrogen production[J]. ChemistrySelect, 2017, 2(31): 10285-10289.
[11] 王鹭,田彦妮,张珂,等. 基于原位技术的尿素电氧化催化机理研究进展[J]. 化学工程, 2024, 52(1):70-75.
[12] ZHANG W D, HU Q T, WANG L L, et al. In-situ generated Ni-MOF/LDH heterostructures with abundant phase interfaces for enhanced oxygen evolution reaction[J]. Applied Catalysis B: Environmental, 2021, 286: 119906.
[13] YADAV S, SHARMA S, DUTTA S, et al. Harnessing the untapped catalytic potential of a CoFe2O4/Mn-BDC hybrid MOF composite for obtaining a multitude of 1,4-disubstituted 1,2,3-triazole scaffolds[J]. Inorganic Chemistry,2020,59(12):8334-8344.
[14] ZHENG Z C, WU D, CHEN L, et al. Collaborative optimization of thermodynamic and kinetic for Ni-based hydroxides in electrocatalytic urea oxidation reaction[J]. Applied Catalysis B: Environmental, 2024, 340: 123214.
[15] YUAN W Z, JIANG T F, FANG X Q, et al. Interface engineering of S-doped Co2P@ Ni2P core-shell heterostructures for efficient and energy-saving water splitting[J]. Chemical Engineering Journal, 2022, 439: 135743.
[16] HOSSEINI M, SHAHRABI T, DARBAND G B, et al. Durable pulse-electrodeposited Ni-Fe-S nanosheets supported on a Ni-s three dimensional pattern as robust bifunctional electrocatalysts for hydrogen evolution and urea oxidation reactions[J]. Langmuir, 2024,40(4):2028-2038.
[17] SONG Y J, JI Z J, ZHAO S H, et al. Reaction site exchange in hierarchical bimetallic Mn/Ni catalysts triggered by the electron pump effect to boost urea electrocatalytic oxidation[J]. Journal of Materials Chemistry A, 2022, 10(19): 10417-10426.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2024-03-07
基金项目:国家重点研发计划(2022YFC3902703);国家自然科学基金(21902108);武汉工程大学科研启动基金(K202253);武汉工程大学第十四届研究生教育创新基金(CX2022462)
作者简介:刘 畅,硕士研究生。Email:1260125465@qq.com
*通信作者:项 坤,博士,副教授。Email:xiangkun@wit.edu.cn;邹 菁,博士,教授。Email:625017630@qq.com
引文格式:刘畅,徐和平,王永靖,等. NiMn MOF尿素氧化辅助电解海水的研究[J]. 武汉工程大学学报,2024,46(3):244-249.

更新日期/Last Update: 2024-07-02