|本期目录/Table of Contents|

[1]张 鹏,方 龙,杜寒威,等.三聚氰胺海绵基太阳能蒸发器的研究进展[J].武汉工程大学学报,2023,45(06):599-605.[doi:10.19843/j.cnki.CN42-1779/TQ.202209027]
 ZHANG Peng,FANG Long,DU Hanwei,et al.Research Progress in Melamine Sponge-Based Solar Evaporator[J].Journal of Wuhan Institute of Technology,2023,45(06):599-605.[doi:10.19843/j.cnki.CN42-1779/TQ.202209027]
点击复制

三聚氰胺海绵基太阳能蒸发器的研究进展(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
45
期数:
2023年06期
页码:
599-605
栏目:
综述
出版日期:
2023-12-28

文章信息/Info

Title:
Research Progress in Melamine Sponge-Based Solar Evaporator
文章编号:
1674 - 2869(2023)06 - 0599 - 07
作者:
张 鹏方 龙杜寒威张 桥李 亮*
武汉工程大学材料科学与工程学院,湖北 武汉 430205
Author(s):
ZHANG Peng FANG Long DU Hanwei ZHANG Qiao LI Liang*
School of Materials Science and Engineering,Wuhan Institute of Technology,Wuhan 430205,China
关键词:
太阳能蒸发器三聚氰胺海绵光热材料
Keywords:
solar evaporator melamine sponge photothermal material
分类号:
TB34
DOI:
10.19843/j.cnki.CN42-1779/TQ.202209027
文献标志码:
A
摘要:
太阳能蒸发器利用太阳光从海水和废水中生产清洁水,被认为是缓解水资源紧缺的有效手段。光热材料是决定太阳能蒸发器蒸发效率的关键因素之一。设计新颖复合结构的光热材料成为研究热点。三聚氰胺海绵具有来源广泛、价格便宜且可造性强等特点,本文重点介绍了三聚氰胺海绵与碳材料、导电聚合物、金属纳米材料等复合用于构造太阳能蒸发器,总结了这些太阳能蒸发器的各自特点与蒸发原理,对基于三聚氰胺海绵的太阳能蒸发器的发展提出建议,指出实现吸光材料有效均匀分散在三聚氰胺海绵中,改善三聚氰胺海绵的抗污性能与脱盐性能,是拓展基于三聚氰胺海绵的太阳能蒸发器应用的重要方向。

Abstract:
Solar evaporators,utilizing sunlight to produce clean water from seawater and wastwater, are considered as an effective route of alleviating water resource shortage. Photothermal material is one of the key factors to determine the evaporation efficiency of the solar evaporators. The design of photothermal materials with novel composite structures is a research hotspot. Melamine sponges have characteristics of wide sources,low cost and excellent manufacturability. This review focuses on the applications of melamine sponges combined with carbon,conducting polymer,and metal nanomaterial as solar evaporators. The characteristics and evaporation principle of solar evaporators are summarized. Suggestions are provided for the development of solar evaporators based on melamine sponges. The effective distribution of photothermal material and the improvement of anti-fouling performance and desalination performance of the melamine sponges are the important directions to expand the applications of solar evaporators based on melamine sponges.

参考文献/References:

[1] ZHENG Z M, LI H Y, ZHANG X D, et al. High-absorption solar steam device comprising Au@Bi2MoO6-CDs:extraordinary desalination and electricity generation [J]. Nano Energy,2020,68:104298:1-10.

[2] ZHANG X, ZHAO W Y, ZHANG Y, et al. A review of resource recovery from seawater desalination brine [J]. Reviews in Environmental Science and Bio/Technology,2021,20(2):333-361.
[3] YU Z,CHENG S A,GU R N,et al. Interfacial solar evaporator for clean water production and beyond:from design to application [J]. Applied Energy,2021,299:117317:1-20.
[4] RAVI KUMAR K,KRISHNA CHAITANYA N V V ,SENDHIL KUMAR N. Solar thermal energy technologies and its applications for process heating and power generation-a review [J]. Journal of Cleaner Production,2021,282:125296:1-40.
[5] ZHOU L, TAN Y L, WANG J Y, et al. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination [J]. Nature Photonics,2016,10(6):393-398.
[6] LI H R, YAN Z,LI Y, et al. Latest development in salt removal from solar-driven interfacial saline water evaporators:advanced strategies and challenges [J]. Water Research,2020,177:115770:1-19.
[7] SHARON H,REDDY K S. A review of solar energy driven desalination technologies [J]. Renewable and Sustainable Energy Reviews,2015,41:1080-1118.
[8] XIAO G,WANG X H,NI M J,et al. A review on solar stills for brine desalination [J]. Applied Energy,2013,103:642-652.
[9] XU Z R, LI Z D, JIANG Y H, et al. Recent advances in solar-driven evaporation systems [J]. Journal of Materials Chemistry A,2020,8(48):25571-25600.
[10] CAO S S,JIANG Q S,WU X H,et al. Advances in solar evaporator materials for freshwater generation [J]. Journal of Materials Chemistry A,2019,7(42):24092-24123.
[11] 李庆维.多孔海绵基太阳能界面蒸发材料制备及其性能研究[D]. 兰州:兰州理工大学,2020.
[12] ZHU L L,GAO M M,PEH C K N,et al. Recent progress in solar-driven interfacial water evaporation:advanced designs and applications [J]. Nano Energy,2019,57:507-518.
[13] DENG Z Y, ZHOU J H, MIAO L, et al. The emergence of solar thermal utilization:solar-driven steam generation [J]. Journal of Materials Chemistry A,2017,5(17):7691-7709.
[14] CHEN C J,KUANG Y D,HU L B. Challenges and opportunities for solar evaporation [J]. Joule,2019,3(3):683-718.
[15] JIN H C,LIN G P,BAI L Z,et al. Steam generation in a nanoparticle-based solar receiver [J]. Nano Energy,2016,28:397-406.
[16] WANG Z H, LIU Y M, TAO P, et al. Bio-inspired evaporation through plasmonic film of nanoparticles at the air-water interface [J]. Small,2014,10(16):3234-3239.
[17] ALVAREZ P J J, CHAN C K, ELIMELECH M,et al. Emerging opportunities for nanotechnology to enhance water security [J]. Nature Nanotechnology,2018,13(8):634-641.
[18] ZHU L L,GAO M M,PEH C K N, et al. Self-contained monolithic carbon sponges for solar-driven interfacial water evaporation distillation and electricity generation [J]. Advanced Energy Materials,2018,8(16):1702149:1-8.
[19] SHI Y,ZHANG C L,LI R Y,et al. Solar evaporator with controlled salt precipitation for zero liquid discharge desalination [J]. Environmental Science & Technology,2018,52(20):11822-11830.
[20] YANG X D,YANG Y B,FU L N,et al. An ultrathin flexible 2D membrane based on single-walled nanotube-MoS2 hybrid film for high-performance solar steam generation [J]. Advanced Functional Materials,2018,28(3):1704505:1-9.
[21] YANG Y W,ZHAO H Y,YIN Z Y,et al. A general salt-resistant hydrophilic/hydrophobic nanoporous double layer design for efficient and stable solar water evaporation distillation [J]. Materials Horizons,2018,5(6):1143-1150.
[22] NI G,LI G,BORISKINA S V,et al. Steam generation under one sun enabled by a floating structure with thermal concentration [J]. Nature Energy,2016,1(9):16126:1-7.
[23] HU X Z,ZHU J. Tailoring aerogels and related 3D macroporous monoliths for interfacial solar vapor generation [J]. Advanced Functional Materials,2020,30(3):1907234:1-17.
[24] WANG J,LI Y Y,DENG L,et al. High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles [J]. Advanced Materials,2017,29(3):1603730:1-6.
[25] DING T P,ZHOU Y,ONG W L,et al. Hybrid solar-driven interfacial evaporation systems:beyond water production towards high solar energy utilization [J]. Materials Today,2021,42:178-191.
[26] DAO V D,VU N H,YUN S N. Recent advances and challenges for solar-driven water evaporation system toward applications [J]. Nano Energy,2020,68:104324:1-18.
[27] ZHOU L,TAN Y L,JI D X,et al. Self-assembly of highly efficient,broadband plasmonic absorbers for solar steam generation [J]. Science Advances,2016,2(4):e1501227:1-8.
[28] 李习标,关昌峰,阎华,等.碳基材料光热水蒸发研究进展[J].化工新型材料,2021,49(8):21-27.
[29] PAPAGEORGIOU D G,KINLOCH I A,YOUNG R J. Mechanical properties of graphene and graphene-based nanocomposites [J]. Progress in Materials Science,2017,90:75-127.
[30] GEORGAKILAS V, PERMAN J A,TUCEK J,et al. Broad family of carbon nanoallotropes:classification,chemistry,and applications of fullerenes,carbon dots,nanotubes,graphene,nanodiamonds,and combined superstructures [J]. Chemical Reviews,2015,115(11):4744-4822.
[31] FAN Y K, TIAN Z Y,WANG F, et al. Enhanced solar-to-heat efficiency of photothermal materials containing an additional light-reflection layer for solar-driven interfacial water evaporation [J]. ACS Applied Energy Materials,2021,4(3):2932-2943.
[32] 谢歆雯. 多孔碳纳米管基复合膜用于海水淡化研究[D]. 厦门:厦门大学,2020.
[33] LI L X,LI Q W,FENG Y G,et al. Melamine/silicone hybrid sponges with controllable microstructure and wettability for efficient solar-driven interfacial desalination[J]. ACS Applied Materials & Interfaces,2022,14(1):2360-2368.
[34] XU K Y,WANG C B,LI Z T,et al. Architecting a Janus biomass carbon/sponge evaporator with salt-rejection and ease of floatation for sustainable solar-driven desalination [J]. Environmental Science:Water Research & Technology,2021,7(5):879-885.
[35] 胥敬维.聚合物光热膜界面性质调控及其太阳能光热蒸汽转化性能[D].武汉:华中科技大学,2020.
[36] LI C W,JIANG D G,HUO B B,et al. Scalable and robust bilayer polymer foams for highly efficient and stable solar desalination [J].Nano Energy,2019,60:841-849.
[37] CHEN J X, LI B, HU G X, et al. Integrated evaporator for efficient solar-driven interfacial steam generation [J]. Nano Letters,2020,20(8):6051-6058.
[38] MARGESON M J, DASOG M. Plasmonic metal nitrides for solar-driven water evaporation [J]. Environmental Science:Water Research & Technology,2020,6(12):3169-3177.
[39] 赵思琪.Cu/石墨烯气凝胶的制备及其光热海水淡化特性研究[D]. 哈尔滨:哈尔滨工业大学,2021.
[40] PAN J F,YU X H,DONG J J,et al. Diatom-inspired TiO2-PANi-decorated bilayer photothermal foam for solar-driven clean water generation [J]. ACS Applied Materials & Interfaces,2021,13(48):58124-58133.
[41] LI R Y, ZHANG L B, SHI L, et al. MXene Ti3C2:an effective 2D light-to-heat conversion material [J]. ACS Nano,2017,11(4):3752-3759.
[42] LIN P C,XIE J J,HE Y D,et al. MXene aerogel-based phase change materials toward solar energy conversion [J]. Solar Energy Materials and Solar Cells,2020,206:110229:1-10.
[43] SOUNDIRARAJU B, GEORGE B K. Two-dimensional titanium nitride (Ti2N) MXene:synthesis,characterization,and potential application as surface-enhanced Raman scattering substrate [J]. ACS Nano,2017,11(9):8892-8900.
[44] SHAHZAD F,ALHABEB M,HATTER C B,et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes) [J]. Science,2016,353(6304):1137-1140.
[45] ZHAO X,ZHA X J,PU J H,et al. Macroporous three-dimensional MXene architectures for highly efficient solar steam generation [J]. Journal of Materials Chemistry A,2019,7(17):10446-10455.
[46] WANG M K,ZHU J,ZI Y,et al. 3D MXene sponge:facile synthesis,excellent hydrophobicity,and high photothermal efficiency for waste oil collection and purification [J]. ACS Applied Materials & Interfaces,2021,13(39):47302-47312.

相似文献/References:

[1]楚诗妤,郑志皓,何承珂,等.二氧化硅/聚四氟乙烯疏水海绵的制备[J].武汉工程大学学报,2021,43(02):170.[doi:10.19843/j.cnki.CN42-1779/TQ.202010003]
 CHU Shiyu,ZHENG Zhihao,HE Chengke,et al.Preparation of Silicon Dioxide/Teflon Hydrophobic Sponge[J].Journal of Wuhan Institute of Technology,2021,43(06):170.[doi:10.19843/j.cnki.CN42-1779/TQ.202010003]

备注/Memo

备注/Memo:
收稿日期:2022-09-22
基金项目:湖北高校2021年省级大学生创新创业训练计划项目(S202110490020)
作者简介:张 鹏,硕士研究生。E-mail:1574729143@qq.com
*通讯作者:李 亮,博士,教授。E-mail:msell08@163.com
引文格式:张鹏,方龙,杜寒威,等. 三聚氰胺海绵基太阳能蒸发器的研究进展[J]. 武汉工程大学学报,2023,45(6):599-605.
更新日期/Last Update: 2023-12-25