|本期目录/Table of Contents|

[1]史晓虎,文小玲*,涂英杰.基于中枢模式发生器的机器鱼分层闭环控制方法[J].武汉工程大学学报,2023,45(05):561-567.[doi:10.19843/j.cnki.CN42-1779/TQ.202303019]
 SHI Xiaohu,WEN Xiaoling*,TU Yingjie.Hierarchical Closed-Loop Control Method of Robotic Fish Based on Central Pattern Generator[J].Journal of Wuhan Institute of Technology,2023,45(05):561-567.[doi:10.19843/j.cnki.CN42-1779/TQ.202303019]
点击复制

基于中枢模式发生器的机器鱼分层闭环控制方法(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
45
期数:
2023年05期
页码:
561-567
栏目:
机电与信息工程
出版日期:
2023-11-17

文章信息/Info

Title:
Hierarchical Closed-Loop Control Method of Robotic Fish
Based on Central Pattern Generator
文章编号:
1674 - 2869(2023)05 - 0561 - 07
作者:
史晓虎1文小玲*1涂英杰2
1. 武汉工程大学电气信息学院,湖北 武汉 430205;
2. 潜江市吉冠生态农业有限公司,湖北 潜江 433116
Author(s):
SHI Xiaohu1 WEN Xiaoling*1 TU Yingjie2
1. School of Electrical and Information Engineering, Wuhan Institute of Technology, Wuhan 430205, China;
2. Qianjiang Jiguan Ecological Agriculture Co., Ltd, Qianjiang 433116, China
关键词:
机器鱼Hopf振荡器中枢模式发生器分层闭环控制
Keywords:
robotic fish Hopf oscillator central pattern generator hierarchical closed-loop control
分类号:
TP242
DOI:
10.19843/j.cnki.CN42-1779/TQ.202303019
文献标志码:
A
摘要:
为实现多关节仿生机器鱼自主巡航及柔性游动的同步控制,采用双向链式最近相邻耦合方式,构建了基于Hopf振荡器的中枢模式发生器(CPG)网络模型,并分析了控制参数与机器鱼游动模态之间的关系。在此基础上,提出了一种基于CPG的分层闭环控制方法,利用传感器网络获取机器鱼的状态信息及环境信息、粒子群-人工势场法进行机器鱼的避障及路径规划、模糊控制器进行轨迹跟踪、具有耦合反馈机制的CPG网络模型生成节律控制信号。最后,进行了机器鱼多个游动模态、模态间的平滑切换、自主巡航和避障的仿真和实验研究,仿真与实验结果验证了所提控制方法的可行性和有效性。

Abstract:
To realize the synchronous control of autonomous cruising and flexible swimming of multi-joint bionic robotic fish, a central pattern generator (CPG) network model based on the Hopf oscillator was constructed using the bidirectional chain nearest neighbor coupling method, and the relationship between the control parameters and the swimming mode of the robotic fish was analyzed. On this basis, a hierarchical closed-loop control method based on CPG was proposed, where the state and environmental information of the robotic fish was obtained using sensor networks, while the obstacle avoidance and path planning of the robotic fish were investigated using a particle swarm optimization-artificial potential field method, and the trajectory tracking was conducted using fuzzy controllers,then the rhythmic control signals were generated in a CPG network model with coupling feedback mechanism. Finally, simulation and experimental studies were conducted for multiple swimming modes, smooth switching between modes, autonomous cruising, and obstacle avoidance of the robotic fish, and the results verified the feasibility and effectiveness of the proposed control method.

参考文献/References:

[1] 张川, 文小玲, 喻盈, 等. 一种双关节机器鱼的设计与实现[J]. 武汉工程大学学报,2021,43(5):573-579.

[2] 王坤, 冯静安, 王卫兵. 仿生机器鱼的水下探测和避障控制[J]. 合肥工业大学学报(自然科学版), 2013, 36(10): 1190-1194.
[3] YU J Z, TAN M. Motion control of biomimetic swimming robots[M]. Berlin: Springer,2020:149-172.
[4] 史晓虎, 文小玲. 仿生机器鱼的运动学建模及控制参数的优化[J].自动化与仪表, 2022, 37(9): 20-24.
[5] 宋晓茹, 高泽鹏, 陈超波, 等. 一种基于增强型烟花算法的自抗扰控制的机器鱼路径跟踪控制方法[J]. 科学技术与工程, 2019, 19(34): 284-293.
[6] 马振鹏, 吴宗法. 混沌神经网络与CPG的作用机制[J]. 西安电子科技大学学报(自然科学版), 2016, 43(5): 173-177.
[7] XIE F R, ZHONG Y, DU R X, et al. Central pattern generator (CPG) control of a biomimetic robot fish for multimodal swimming[J]. Journal of Bionic Engineering, 2019, 16(2): 222-234.
[8] 闫勇程, 王扬威, 兰博文, 等. 水下仿生机器人CPG控制方法研究现状综述[J]. 微特电机, 2017, 45(11): 72-77.
[9] 林佳裔, 胡小春, 张春. CPG机理的双足机器人运动轨迹生成与分析[J]. 机械设计与制造, 2020(2): 256-259.
[10] FUKUOKA Y, KIMURA H, COHEN A H. Adaptive dynamic walking of a quadruped robot on irregular terrain based on biological concepts [J]. International Journal of Robotics Research, 2003, 22(3/4):187-202.
[11] LJSPEERT A J, CRESPI A, RYCZKO D, et al. From swimming to walking with a salamander robot driven by a spinal cord model[J]. Science, 2007, 315: 1416-1420.
[12] WU Z X , YU J Z , SU Z S , et al. Towards an Esox lucius inspired multimodal robotic fish[J]. Science China Information Sciences, 2015, 58(5): 052203:1-13.
[13] IKEDA M, HIKASA S, WATANABE K, et al. A CPG design of considering the attitude for the propulsion control of a Manta robot[C]//39th Annual Conference of the IEEE Industrial Electronics Society. Piscataway:IEEE, 2013: 6354-6358.
[14] CAO Y, BI S S, CAI Y R, et al. Applying central pattern generators to control the robofish with oscillating pectoral fins[J]. Industrial Robot, 2015, 42(5): 392-405.
[15] 王扬威, 闫勇程, 刘凯, 等. 基于CPG的仿生环形长鳍波动推进器运动控制[J]. 机器人, 2016, 38(6): 746-753.
[16] 王海龙, 张奇峰, 王刚, 等. 基于CPG的仿海蟹机器人浮游步态生成方法[J]. 华中科技大学学报(自然科学版), 2018, 46(4): 86-91.
[17] 李宗刚, 夏文卿, 葛立明, 等. 仿生机器鱼胸/尾鳍协同推进闭环深度控制[J]. 机器人, 2020, 42(1): 110-119.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2023-03-13
基金项目:武汉工程大学研究生教育创新基金(CX2021073)
作者简介:史晓虎,硕士研究生。E-mail:1975587837@qq.com
*通讯作者:文小玲,硕士,教授。E-mail:wxl@wit.edu.cn
引文格式:史晓虎,文小玲,涂英杰. 基于中枢模式发生器的机器鱼分层闭环控制方法[J]. 武汉工程大学学报,2023,45(5):561-567.
更新日期/Last Update: 2023-10-25