|本期目录/Table of Contents|

[1]鲜于万新,夏致祥,田贵森,等.苯胺四聚体/还原氧化石墨烯薄膜的热电性能研究[J].武汉工程大学学报,2023,45(05):517-523.[doi:10.19843/j.cnki.CN42-1779/TQ.202209010]
 XIANYU Wanxin,XIA Zhixiang,TIAN Guisen,et al.Thermoelectric Properties of Aniline Tetramer/ReducedGraphene Oxide Films[J].Journal of Wuhan Institute of Technology,2023,45(05):517-523.[doi:10.19843/j.cnki.CN42-1779/TQ.202209010]
点击复制

苯胺四聚体/还原氧化石墨烯薄膜的热电性能研究(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
45
期数:
2023年05期
页码:
517-523
栏目:
材料科学与工程
出版日期:
2023-11-17

文章信息/Info

Title:
Thermoelectric Properties of Aniline Tetramer/Reduced
Graphene Oxide Films
文章编号:
1674 - 2869(2023)05 - 0517 - 07
作者:
鲜于万新夏致祥田贵森张云飞杜飞鹏*
武汉工程大学材料科学与工程学院,湖北 武汉 430205
Author(s):
XIANYU Wanxin XIA Zhixiang TIAN Guisen ZHANG Yunfei DU Feipeng*
School of Materials Science and Engineering,Wuhan Institute of Technology,Wuhan 430205,China
关键词:
还原氧化石墨烯苯胺四聚体复合薄膜热电性能
Keywords:
reduced graphene oxideaniline tetramercomposite filmthermoelectric properties

分类号:
TB33
DOI:
10.19843/j.cnki.CN42-1779/TQ.202209010
文献标志码:
A
摘要:
为了增强石墨烯的热电性能,在氧化石墨烯(GO)中掺入不同量的苯胺四聚体(ANIT),采用酸性碘化钾溶液在100 ℃加热1 h将其还原为还原氧化石墨烯(rGO)薄膜。研究了含不同苯胺四聚体掺杂量的复合薄膜的组成、微结构与热电性能之间的关系。结果表明:ANIT掺杂在rGO的表面与片层之间增强了其导电连接,随着ANIT掺杂量的增大,ANIT/rGO复合薄膜载流子浓度基本保持不变,当ANIT与GO质量比小于2.5∶100时,载流子迁移率随掺量的增加而升高;然而大量的ANIT掺杂却增大了石墨烯片层间距,当ANIT与GO质量比大于2.5∶100时,载流子迁移率随掺量的增加而下降。当ANIT/rGO复合薄膜的塞贝克系数基本不变时,电导率和功率因数随着载流子迁移率的变化而变化,在ANIT和GO质量比为2.5∶100时,电导率和功率因数均达到最大值,分别为212 S/cm和6.4 μW/(m·K2)。

Abstract:
To improve the thermoelectric properties of graphene,different content of aniline tetramer (ANIT) was incorporated into graphene oxide (GO) to form ANIT/GO films. An acidic potassium iodide solution was used as a reducing agent to reduce ANIT/GO films at 100 ℃ for 1 h and the ANIT/reduced graphene oxide (rGO) films were obtained. The relationships of composition,microstructure and thermoelectric properties of the composite films with different amounts of ANIT were investigated. The results show that the ANIT doping enhances the conductive connection between the surface and the layers of rGO,and the carrier concentration of ANIT/rGO composite films remains basically unchanged with the increase of ANIT content,when the mass ratios of ANIT to GO are lower than 2.5∶100,the carrier mobility of the composite films increases with the increase of ANIT content. However,excessive incorporation of ANIT enlarges the spacing of graphene layers,causing a reduction of the conductivity,and when the mass ratios of ANIT to GO is higher than 2.5∶100,the carrier mobility of composite films decreases with the increase of ANIT content. When the Seebeck coefficients of ANIT/rGO composite films are basically unchanged, the conductivity and power factor change with the change of carrier mobility. The maximum values of electrical conductivity and power factor are 212 S/cm and 6.4 μW/(m·K2),respectively, when the mass ratio of ANIT and GO is 2.5∶100.

参考文献/References:

[1] DURAN S S F,LIM W Y S,CAO J,et al. Thermoelectricity:phenomenon and applications [M]. Sulfide and Selenide Based Materials for Emerging Applications,Oxford:Elsevier,2022:267-293.

[2] ZHANG L,SHI X L,YANG Y L,et al. Flexible thermoelectric materials and devices:from materials to applications [J]. Materials Today,2021,46:62-108.
[3] HSIEH Y Y,ZHANG Y,ZHANG L,et al. High thermoelectric power-factor composites based on flexible three-dimensional graphene and polyaniline [J]. Nanoscale,2019,11(14):6552-6560.
[4] WANG L M,YAO Q,BI H,et al. Large thermoelectric power factor in polyaniline/graphene nanocomposite films prepared by solution-assistant dispersing method [J]. Journal of Materials Chemistry A,2014,2(29):11107-11113.
[5] ZENG W,TAO X M,LIN S P,et al. Defect-engineered reduced graphene oxide sheets with high electric conductivity and controlled thermal conductivity for soft and flexible wearable thermoelectric generators [J]. Nano Energy,2018,54:163-174.
[6] LI T,PICKEL A D,YAO Y G,et al. Thermoelectric properties and performance of flexible reduced graphene oxide films up to 3 000 K [J]. Nature Energy,2018,3(2):148-156.
[7] GAO J, LIU C Y, MIAO L, et al. Improved thermoelectric performance in flexible tellurium nanowires/reduced graphene oxide sandwich structure hybrid films [J]. Journal of Electronic Materials,2017,46(5):3049-3056.
[8] MEHMOOD T,KIM J H,LEE D J,et al. A microstructuring route to enhanced thermoelectric efficiency of reduced graphene oxide films [J]. Materials Research Express,2019,6(7):075614:1-13.
[9] CHATTERJEE M J,BANERJEE D,CHATTERJEE K. Composite of single walled carbon nanotube and sulfosalicylic acid doped polyaniline:a thermoelectric material [J]. Materials Research Express,2016,3(8):085009:1-12.
[10] LIU S Q,LI H,LI P C,et al. Recent advances in polyaniline-based thermoelectric composites [J]. CCS Chemistry,2021,3(10):2547-2560.
[11] DU F P,ZHANG H,TIAN G S,et al. Enhanced thermoelectric performance of single-walled carbon nanotubes films assembled with aniline tetramer [J]. Journal of Materials Science,2022,57(29):14041-14051.
[12] CHENG X L,ZHANG Y F,WU Y G,et al. Thermally sensitive n-type thermoelectric aniline oligomer-block-polyethylene glycol-block-aniline oligomer ABA triblock copolymers [J]. Macromolecular Chemistry and Physics,2018,219(9):1700635:1-8.
[13] SHILYAEVA E A,NOVAKOVSKAYA Y V. Certain features of graphite oxide functional groups as drawn from simulations and experiment [J]. Structural Chemistry,2019,30(2):583-594.
[14] ZHANG C,DABBS D M,LIU L M,et al. Combined effects of functional groups,lattice defects,and edges in the infrared spectra of graphene oxide [J]. The Journal of Physical Chemistry C,2015,119(32):18167-18176.
[15] WANG W J,ZHANG Q H,LI J L,et al. An efficient thermoelectric material:preparation of reduced graphene oxide/polyaniline hybrid composites by cryogenic grinding [J]. RSC Advances,2015,5(12):8988-8995.
[16] TRCHOVá M, MORáVKOVá Z,BLáHA M,et al. Raman spectroscopy of polyaniline and oligoaniline thin films [J]. Electrochimica Acta,2014,122:28-38.
[17] ALLOIN F,HIRANKUMAR G,PAGNIER T. Temperature-dependent Raman spectroscopy of lithium triflate-PEO complexes:phase equilibrium and component interactions [J]. The Journal of Physical Chemistry B,2009,113(52):16465-16471.
[18] KIM S J,PARK S J,KIM H Y,et al. Characterization of chemical doping of graphene by in-situ Raman spectroscopy [J]. Applied Physics Letters,2016,108(20):203111:1-5.
[19] FERRARI A C. Raman spectroscopy of graphene and graphite:disorder,electron-phonon coupling,doping and nonadiabatic effects [J]. Solid State Communications,2007,143(1/2):47-57.
[20] CHEN Y N,FU K,ZHU S Z,et al. Reduced graphene oxide films with ultrahigh conductivity as Li-ion battery current collectors [J]. Nano Letters,2016,16(6):3616-3623.
[21] ?IMEK P,KLíMOVá K,SEDMIDUBSKY D,et al. Towards graphene iodide:iodination of graphite oxide [J]. Nanoscale,2015,7(1):261-270.
[22] WANG L M,YAO Q,BI H,et al. PANI/graphene nanocomposite films with high thermoelectric properties by enhanced molecular ordering [J]. Journal of Materials Chemistry A,2015,3(13):7086-7092.
[23] LI D,MüLLER M B,GILJE S,et al. Processable aqueous dispersions of graphene nanosheets [J]. Nature Nanotechnology,2008,3(2):101-105.
[24] GUEX L G,SACCHI B,PEUVOT K F,et al. Experimental review:chemical reduction of graphene oxide (GO) to reduced graphene oxide (rGO) by aqueous chemistry [J]. Nanoscale,2017,9(27):9562-9571.
[25] PAN K W,LENG T,SONG J,et al. Controlled reduction of graphene oxide laminate and its applications for ultra-wideband microwave absorption [J]. Carbon,2020,160:307-316.
[26] PEI S F,ZHAO J P,DU J H,et al. Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids [J]. Carbon,2010,48(15):4466-4474.

相似文献/References:

[1]戴 萌,薛开诚,郭 立,等.还原氧化石墨烯气凝胶水蒸发诱导发电性能的研究[J].武汉工程大学学报,2023,45(06):628.[doi:10.19843/j.cnki.CN42-1779/TQ.202211019]
 DAI Meng,XUE Kaicheng,GUO Li,et al.Water Evaporation-Induced Power Generation Performance ofReduced Graphene Oxide Aerogels[J].Journal of Wuhan Institute of Technology,2023,45(05):628.[doi:10.19843/j.cnki.CN42-1779/TQ.202211019]
[2]薛开诚,郭 立,刘银波,等.多壁碳纳米管/还原氧化石墨烯气凝胶的水蒸发性能研究[J].武汉工程大学学报,2024,46(03):267.[doi:10.19843/j.cnki.CN42-1779/TQ.202306019]
 XUE Kaicheng,GUO Li,LIU Yinbo,et al.Water evaporation properties of multi-walled carbon nanotubes/reduced graphite oxide aerogel[J].Journal of Wuhan Institute of Technology,2024,46(05):267.[doi:10.19843/j.cnki.CN42-1779/TQ.202306019]

备注/Memo

备注/Memo:
收稿日期:2022-09-06
基金项目:国家自然科学基金(51803157)
作者简介:鲜于万新,硕士研究生。E-mail:1078125476@qq.com
*通讯作者:杜飞鹏,博士,教授。E-mail:hsdfp@163.com
引文格式:鲜于万新,夏致祥,田贵森,等. 苯胺四聚体/还原氧化石墨烯薄膜的热电性能研究[J]. 武汉工程大学学报,2023,45(5):517-523.
更新日期/Last Update: 2023-10-25