|本期目录/Table of Contents|

[1]罗 娟,陈世碧,姚植彩,等.稀土离子掺杂荧光材料在防伪技术领域的研究进展[J].武汉工程大学学报,2023,45(05):482-489.[doi:10.19843/j.cnki.CN42-1779/TQ.202203026]
 LUO Juan,CHEN Shibi,YAO Zhicai,et al.Progress in Rare Earth Ion-Doped Fluorescent Materials in Anti-Counterfeiting Technology[J].Journal of Wuhan Institute of Technology,2023,45(05):482-489.[doi:10.19843/j.cnki.CN42-1779/TQ.202203026]
点击复制

稀土离子掺杂荧光材料在防伪技术领域的研究进展(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
45
期数:
2023年05期
页码:
482-489
栏目:
综述
出版日期:
2023-11-17

文章信息/Info

Title:
Progress in Rare Earth Ion-Doped Fluorescent Materials in Anti-Counterfeiting Technology

文章编号:
1674 - 2869(2023)05 - 0482 - 08
作者:
罗 娟陈世碧姚植彩龚劲松徐 慢戴武斌*
武汉工程大学材料科学与工程学院,湖北 武汉 430205
Author(s):

School of Materials Science and Engineering,Wuhan Institute of Technology,Wuhan 430205,China
关键词:
荧光材料稀土离子上转换发光能级跃迁防伪技术
Keywords:
102 102) background-color: rgb(255 255 255) font-family: Arial Verdana sans-serif font-size: 12pt">fluorescent materialsrare earth ionsupconversion luminescenceenergy level transition anti-counterfeiting technology
分类号:
O482.31
DOI:
10.19843/j.cnki.CN42-1779/TQ.202203026
文献标志码:
A
摘要:
具有可调输出、光透射率较低和声子能量少的稀土荧光材料在安全图案、标签和编码等防伪技术领域得到了广泛关注。基于信息存储方面对防伪材料荧光性的需求,稀土掺杂荧光防伪材料从单一荧光模式向复合型荧光模式发展,并以防伪油墨、防伪薄膜等材料形式赋予了图案、标签和编码等防伪技术不同的安全模式。从荧光防伪技术基本防伪概念和应用研究等角度总结了国内外实现可调色发射、多刺激响应的复合型荧光防伪材料的最新研究进展。同时就现阶段荧光防伪技术中多模时空荧光防伪和实际应用的不足进行了探讨,进一步对荧光防伪材料在实际生活中的应用进行了展望。旨在为荧光防伪技术特别是稀土掺杂防伪材料的研究和应用提供一定参考。
Abstract:
Due to tunable output,low light transmittance,and low phonon energy,rare earth fluorescent materials have received widespread attention in the area of anti-counterfeiting technology,such as security patterns,labels,and codings. Based on the demand for fluorescence of anti-counterfeiting materials in information storage,the rare earth-doped fluorescent anti-counterfeiting materials have been developed from single fluorescence mode to composite fluorescence mode. Different security modes for anti-counterfeiting technologies such as patterns,labels,and codings are used in the forms of anti-counterfeiting ink,anti-counterfeiting film,and other materials. This review summarizes the latest research progress in composite fluorescent anti-counterfeiting materials with tunable color emission and multi-stimulus response from the perspectives of basic anti-counterfeiting concepts and applications research of fluorescent anti-counterfeiting technologies from home and abroad. Simultaneously,the shortcomings of multi-mode space-time fluorescence anti-counterfeiting and practical applications were explored,and the prospect of further use of fluorescent anti-counterfeiting materials in real life was also prospected. This article aims to provide a certain reference for the research and application of fluorescent anti-counterfeiting technologies,especially rare earth-doped anti-counterfeiting materials.

参考文献/References:

[1] WANG J X,GAO Y, ZHANG J J, et al. Invisible photochromism and optical anti-counterfeiting based on D-A type inverse diarylethene [J]. Journal of Materials Chemistry C,2017,5(18):4571-4577.

[2] WU Y F S,WU W. Combinations of superior inorganic phosphors for level-tunable information hiding and encoding [J]. Advanced Optical Materials,2021,9(17):2100281:1-26.
[3] MORETTI E,PIZZOL G,FANTIN M,et al. Luminescent Eu-doped GdVO4 nanocrystals as optical markers for anti-counterfeiting purposes [J]. Chemical Papers,2017,71(1):149-159.
[4] PRAMANIK A,BISWAS S,KOLE A K,et al. Template-free hydrothermal synthesis of amphibious fluorescent carbon nanorice towards anti-counterfeiting application and unleashing its nonlinear optical properties [J]. RSC Advances,2016,6(101):99060-99071.
[5] BAI J L,MA Y S,YUAN G J,et al. Solvent-controlled and solvent-responded strategies for the synthesis of multiplecolor carbon dots for pH sensing and cell imaging [J]. Journal of Materials Chemistry C,2019,7(31):9709-9718.
[6] ANDRES J, HERSCH R D, MOSER J E, et al. A new anti-counterfeiting feature relying on invisible luminescent full color images printed with lanthanide-based inks [J]. Advanced Functional Materials,2014,24(32):5029-5036.
[7] NAM H,SONG K,HA D,et al. Inkjet printing based mono-layered photonic crystal patterning for anti-counterfeiting structural colors [J]. Scientific Reports,2016,6:30885:1-9.
[8] 龚果. 核壳型镧系掺杂氟化钠荧光纳米材料的制备及喷墨打印[D]. 株洲:湖南工业大学,2021.
[9] LI M X,YAO W J,LIU J,et al. Facile synthesis and screen printing dual-mode luminescent NaYF4:Er,Yb (Tm)/carbon dots for anti-counterfeiting applications [J]. Journal of Materials Chemistry C,2017,5(26):6512-6520.
[10] SUO H,ZHU Q,ZHANG X,et al. High-security anti-counterfeiting through upconversion luminescence [J]. Materials Today Physics,2021,21:100520:1-10.
[11] 黎华,戴武斌,许硕,等. 红色荧光粉Ca3La3(BO3)5:Eu3+的制备及光学性能[J]. 武汉工程大学学报,2020,42(6):633-636.
[12] SMITH A F,SKRABALAK S E. Metal nanomaterials for optical anti-counterfeit labels [J]. Journal of Materials Chemistry C,2017,5(13):3207-3215.
[13] ZHANG J S,ZHANG Y Z,TAO J,et al. Study on the light-color mixing of rare earth luminescent materials for anti-counterfeiting application[J]. Materials Research Express,2018,5(4):046201:1-7.
[14] LI P F, ZENG J S, WANG B, et al. Waterborne fluorescent dual anti-counterfeiting ink based on Yb/Er-carbon quantum dots grafted with dialdehyde nano-fibrillated cellulose [J]. Carbohydrate Polymers,2020,247:116721:1-11.
[15] YUAN S L,WANG L T,XIA B B,et al. Upconversion luminescent properties and mechanisms of bulk La2O2CN2:Er3+/Yb3+ phosphors [J]. Ceramics Interna-tional,2017,43(17):16018-16022.
[16] LIU J,KACZMAREK A M,VANDEUN R. Downshifting/upconversion NaY(MoO4)2 luminescent materials as highly sensitive fluorescent sensors for Pb2+ ions detection [J]. Sensors and Actuators B:Chemical,2018,255(Part 2):2163-2169.
[17] JIA F F, LI G L,YANG B,et al. Investigation of rare earth upconversion fluorescent nanoparticles in biomedical field [J]. Nanotechnology Reviews,2019,8(1):1-17.
[18] CHIA T H, LEVENE M J. Detection of counterfeit U.S. paper money using intrinsic fluorescence lifetime [J]. Optics Express,2009,17(24):22054-22061.
[19] HALDAR S. Delving into membrane heterogeneity utilizing fluorescence lifetime distribution analysis [J]. The Journal of Membrane Biology,2022,255(4/5):553-561.
[20] 许硕,冯力,徐大千,等.稀土离子掺杂荧光粉材料在染料敏化太阳能电池中的研究进展[J].武汉工程大学学报,2021,43(1):45-49.
[21] 杜海燕,杨志萍,孙家跃.上转换发光材料及发光效率研究及展望[J].化工新型材料,2009,37(9):5-7,13.
[22] 张伟,左芳.上转换发光材料在不同防伪领域的研究进展 [J]. 精细化工,2021,38(12):2450-2457.
[23] ZHANG J,CHEN J J,ZHANG Y N. Temperature-sensing luminescent materials La9.67Si6O26.5:Yb3+-Er3+/ Ho3+ based on pump-power-dependent upconversion luminescence [J]. Inorganic Chemistry Frontiers,2020,7(24):4892-4901.
[24] FAN C H,AO K L,Lü P F, et al. Fluorescent nitrogen-doped carbon dots via single-step synthesis applied as fluorescent probe for the detection of Fe3+ ions and anti-counterfeiting inks [J]. Nano,2018,13(8):1850097:1-14.
[25] PANG Y Y, ZHAO R J, LU Y, et al. Facile preparation of N-doped graphene quantum dots as quick-dry fluorescent ink for anti-counterfeiting [J]. New Journal of Chemistry,2018,42(20):17091-17095.
[26] 蒋斌,刘斌,唐博.防伪印刷技术的发展与应用[J]. 造纸装备及材料,2020,49(6):103-105.
[27] 王思,魏先福,黄蓓青.水印防伪技术的研究及发展[J]. 中国防伪报道,2013(12):104-107.
[28] 汤伟冲,王秋菊,罗童,等.浅谈防伪油墨技术的现状与发展[J]. 中国防伪报道,2021(12):102-104.
[29] 周尉琴. 现代印刷防伪技术的发展及应用[J]. 今日印刷,2020(9):75-77.
[30] CHEN B,XIE H P,WANG S,et al. UV light‐tunable fluorescent inks and polymer hydrogel films based on carbon nanodots and lanthanide for enhancing anti-counterfeiting [J]. Luminescence,2019,34(4):437-443.
[31] ZHUO C S,ZHAO S C,HUANG X Y,et al. Environment-friendly luminescent inks and films based on lanthanides toward advanced anti-counterfeiting [J]. Journal of Molecular Liquids,2023,376:121442:1-12.
[32] WU W N,LIU H Z,YUAN J,et al. Nanoemulsion fluorescent inks for anti-counterfeiting encryption with dual-mode,full-color,and long-term stability [J]. Chemical Communications,2021,57(40):4894-4897.
[33] TANG Y M, DENG M X, WANG M C, et al. Bismuth‐activated persistent phosphors [J]. Advanced Optical Materials,2022,11(2):2201827:1-21.
[34] WANG Z F,YE W W,LUO X R,et al. Fabrication of superhydrophobic and luminescent rare earth/polymer complex films [J]. Scientific Reports,2016,6:24682: 1-10.
[35] SUN J L,HUA Q L,ZHAO M Q,et al. Stable ultrathin perovskite/polyvinylidene fluoride composite films for imperceptible multi-color fluorescent anti-counterfeiting labels[J]. Advanced Materials Technologies,2021,6(10):2100229:1-7.
[36] YI S S, JUNG J Y. Calcium tungstate doped with rare earth ions synthesized at low temperatures for photoactive composite and anti-counterfeiting applications [J]. Crystals,2021,11(10):1214:1-9.
[37] GUO L C,WANG T, WANG Q Y,et al. Temporal@ spatial anti-counterfeiting with Mn2+/Bi3+/Er3+ doped BaZnOS phosphors [J]. Chemical Engineering Journal,2022,442(Part 2):136236:1-8.
[38] KUMAR P,SINGH S,GUPTA B K. Future prospects of luminescent nanomaterials based security ink:from synthesis to anti-counterfeiting applications[J]. Nanoscale,2016,8(30):14297-14340.
[39] LI G G,TIAN Y,ZHAO Y,et al. Recent progress in luminescence tuning of Ce3+ and Eu2+-activated phosphors for pc-WLEDs [J]. Chemical Society Reviews,2015,44(23):8688-8713.
[40] LIU Y, LEE Y H, ZHANG Q, et al. Plasmonic nanopillar arrays encoded with multiplex molecular information for anti-counterfeiting applications [J]. Journal of Materials Chemistry C,2016,4(19):4312-4319.
[41] SANDHYARANI A,KOKILA M K,DARSHAN G P,et al. Versatile core-shell SiO2@SrTiO3:Eu3+, Li+ nanopowders as fluorescent label for the visualization of latent fingerprints and anti-counterfeiting applications [J]. Chemical Engineering Journal,2017,327:1135-1150.
[42] CHEN H,HU H L,SUN B C,et al. Dynamic anti-counterfeiting labels with enhanced multi-level information encryption [J]. ACS Applied Materials & Interfaces,2023,15(1):2104-2111.
[43] KUMAR P,NAGPAL K,GUPTA B K. Unclonable security codes designed from multicolor luminescent lanthanide-doped Y2O3 nanorods for anti-counterfeiting [J]. ACS Applied Materials & Interfaces,2017,9(16):14301-14308.
[44] CUI S B,TAO L,CHAN W K, et al. Tunable concentration-dependent upconversion and down- conversion luminescence in NaYF4: Yb3+, Er3+@ NaYF4:Yb3+,Nd3+ core-shell nanocrystals for a dual-mode anti-counterfeiting imaging application [J]. Optics Letters,2022,47(11):2814-2817.
[45] XU J, ZHU T H, CHEN X Z, et al. Tri-channel tubular lanthanide nanocomposites for multimodal anti-counterfeiting [J]. Journal of Luminescence,2023,256:119647:1-10.
[46] SI T,ZHU Q,ZHANG T,et al. Co-doping Mn2+/Cr3+ in ZnGa2O4 to fabricate chameleon-like phosphors for multi-mode dynamic anti-counterfeiting[J]. Chemical Engineering Journal,2021,426:131744:1-11.
[47] XU L M, CHEN J W, SONG J Z, et al. Double-protected all-inorganic perovskite nanocrystals by crystalline matrix and silica for triple-modal anti-counterfeiting codes [J]. ACS Applied Materials & Interfaces,2017,9(31):26556-26564.
[48] YOU M L, ZHONG J J, HONG Y, et al. Inkjet printing of upconversion nanoparticles for anti-counterfeit applications [J]. Nanoscale,2015,7(10):4423-4431.
[49] MERUGA J M,BARIDE A,CROSS W,et al. Red-green-blue printing using luminescence-upconversion inks [J]. Journal of Materials Chemistry C,2014,2(12):2221-2227.
[50] DU Y Y,JIANG Y,SUN T Y,et al. Mechanically excited multicolor luminescence in lanthanide ions [J]. Advanced Materials,2019,31(7):1807062:1-8.

相似文献/References:

[1]石春杰,邵鑫鑫,聂 文,等.稀土离子改性膨润土对联苯的选择性硝化[J].武汉工程大学学报,2016,38(4):337.[doi:10. 3969/j. issn. 1674?2869. 2016. 04. 006]
 SHI Chunjie,SHAO Xinxin,NIE Wen,et al.Selective Nitration of Biphenyl by Rare-Earth Ions Modified Bentionite[J].Journal of Wuhan Institute of Technology,2016,38(05):337.[doi:10. 3969/j. issn. 1674?2869. 2016. 04. 006]
[2]许 硕,冯 力,徐大千,等.稀土离子掺杂荧光粉材料在染料敏化太阳能电池中的研究进展[J].武汉工程大学学报,2021,43(01):45.[doi:10.19843/j.cnki.CN42-1779/TQ.202008006]
 XU Shuo,FENG Li,XU Daqian,et al.Research Progress in Rare Earth Ion Doped Phosphor Materials in Dye-Sensitized Solar Cells[J].Journal of Wuhan Institute of Technology,2021,43(05):45.[doi:10.19843/j.cnki.CN42-1779/TQ.202008006]
[3]毕荣锋,张 芳*,毕 愿.氧化钇基透明陶瓷的研究进展[J].武汉工程大学学报,2022,44(03):244.[doi:10.19843/j.cnki.CN42-1779/TQ.202104016]
 BI Rongfeng,ZHANG Fang*,BI Yuan.Progress in Yttria Oxide-Based Transparent Ceramics[J].Journal of Wuhan Institute of Technology,2022,44(05):244.[doi:10.19843/j.cnki.CN42-1779/TQ.202104016]

备注/Memo

备注/Memo:
收稿日期:2022-03-16
基金项目:武汉工程大学第十四届研究生创新基金(CX2022242);湖北三峡实验室创新基金(SC212003)
作者简介:罗 娟,硕士研究生。E-mail:22105010108@stu.wit.edu.cn
*通讯作者:戴武斌,博士,特聘教授。E-mail:wubin.dai@wit.edu.cn
引文格式:罗娟,陈世碧,姚植彩,等. 稀土离子掺杂荧光材料在防伪技术领域的研究进展[J]. 武汉工程大学学报,2023,45(5):482-489.
更新日期/Last Update: 2023-10-25