|本期目录/Table of Contents|

[1]欧阳磊,朱丽华,帅 琴.表面增强拉曼光谱的样品前处理方法研究进展[J].武汉工程大学学报,2023,45(05):473-481.[doi:10.19843/j.cnki.CN42-1779/TQ.202103029]
 OUYANG Lei,ZHU Lihua,SHUAI Qin.Progress in Pretreatment Methods Suitable for Surface-Enhanced Raman Spectroscopy[J].Journal of Wuhan Institute of Technology,2023,45(05):473-481.[doi:10.19843/j.cnki.CN42-1779/TQ.202103029]
点击复制

表面增强拉曼光谱的样品前处理方法研究进展(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
45
期数:
2023年05期
页码:
473-481
栏目:
综述
出版日期:
2023-11-17

文章信息/Info

Title:
Progress in Pretreatment Methods Suitable for Surface-Enhanced Raman Spectroscopy
文章编号:
1674 - 2869(2023)05 - 0473 - 09
作者:
欧阳磊1朱丽华2帅 琴1
1. 中国地质大学(武汉)生物地质与环境地质国家重点实验室,材料与化学学院,湖北 武汉 430074;
2. 华中科技大学化学与化工学院,湖北 武汉 430074
Author(s):
OUYANG Lei1 ZHU Lihua2 SHUAI Qin1
1. State key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China;
2 . School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
关键词:
表面增强拉曼光谱前处理方法选择性识别萃取分离色谱分离
Keywords:
surface-enhanced Raman spectroscopy pretreatment method selective recognition extraction separation chromatographic separation
分类号:
O657.3
DOI:
10.19843/j.cnki.CN42-1779/TQ.202103029
文献标志码:
A
摘要:
表面增强拉曼光谱(SERS)作为新型痕量分析技术,具有选择性好、灵敏度高、检测简便快捷的特点,在化学分析、食药快检、生物医学检测成像等领域得到了广泛的应用。面向实际应用环境的SERS技术包含有效的SERS增强基底和配套的前处理方法两方面内容。对近年来SERS领域相关配套前处理方法的进展进行了整理和归纳,根据其基本原理,分为基于疏水浓缩效应的前处理方法、基于化学识别作用的前处理方法、基于生物识别作用的前处理方法、基于选择性萃取的前处理方法和基于色谱分离的前处理方法等几类。结合现有SERS技术的应用难题,对今后可能的基于多目标物同时识别和基于机器学习的光谱分析用于复杂成分分析、构建与SERS联用的自动化前处理装置等研究重点进行了展望,可为SERS技术的应用实践提供指导。

Abstract:
Surface-enhanced Raman spectroscopy (SERS) is a promising trace analysis method with good selectivity, high sensitivity, fast and facile detection. It shows great potential in the fields of chemical detection, on-site inspection of food and drug and biomedical detection. But the real application of this technique requires a suitable sample pretreatment method and functional SERS sensors to selectively capture the signals from the target molecules in the complex matrix. This review systematically summarizes the advances in SERS pretreatment methods. The reported pretreatment methods are classified into types based on their basic mechanisms such as hydrophobic concentration effect, chemical recognition, biological recognition, selective extraction and chromatographic strategies. Based on the existing challenges of real application, the outlook of potential research focuses such as complex components analysis using multiple targets recognition and artificial intelligence-based spectroscopic data processing method, SERS compatible automation device construction in the future is concluded, providing guidance for the future development of SERS technology.

参考文献/References:

[1] GRAHAM D, MOSKOVITS M, TIAN Z Q. SERS-facts, figures and the future [J]. Chemical Society Reviews, 2017, 46 (13): 3864-3865.

[2] FLEISCHMANN M, HENDRA P J, MCQUILLAN A J. Raman spectra of pyridine adsorbed at a silver electrode [J]. Chemical Physics Letters, 1974, 26 (2): 163-166.
[3] JEANMAIRE D L, VAN DUYNE R P. Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode [J]. Journal of Electroanalytical Chemistry,1977 ,84:1-20.
[4] KIM J, JANG Y, KIM N J, et al. Study of chemical enhancement mechanism in nonplasmonic surface enhanced Raman spectroscopy (SERS) [J]. Frontiers in Chemistry, 2019, 7: 582.
[5] KAO Y C, HAN X M, LEE Y H, et al. Multiplex surface-enhanced Raman scattering identification and quantification of urine metabolites in patient samples within 30 min [J]. ACS Nano, 2020, 14 (2): 2542-2552.
[6] ZHANG D J, PENG L Q, SHANG X L, et al. Buoyant particulate strategy for few-to-single particle-based plasmonic enhanced nanosensors [J]. Nature Communications, 2020, 11 (1): 2603.
[7] ALVAREZ-PUEBLA R A, AROCA R F. Synthesis of silver nanoparticles with controllable surface charge and their application to surface-enhanced Raman scattering [J]. Analytical Chemistry, 2009, 81 (6): 2280-2285.
[8] LAI Y C, WANG C J, SHAO H. Thioctic acid-modified silver nanoplates on copper foil for low interference detection of fluoranthene by surface-enhanced Raman spectroscopy [J]. ACS Applied Nano Materials, 2020, 3 (2): 1800-1807.
[9] MILLIGAN K, SHAND N C, GRAHAM D, et al. Detection of multiple nitroaromatic explosives via formation of a janowsky complex and SERS [J]. Analytical Chemistry, 2020, 92 (4): 3253-3261.
[10] LEONG Y X, LEE Y H, KOH C S L, et al. Surface-enhanced Raman scattering (sers) taster: a machine-learning-driven multireceptor platform for multiplex profiling of wine flavors [J]. Nano Letters, 2021, 21 (6): 2642-2649.
[11] TAO C A, AN Q, ZHU W, et al. Cucurbit[n]urils as a SERS hot-spot nanocontainer through bridging gold nanoparticles [J]. Chemical Communications, 2011, 47 (35): 9867-9869.
[12] OUYANG L, ZHU L H, RUAN Y F, et al. Preparation of a native β-cyclodextrin modified plasmonic hydrogel substrate and its use as a surface-enhanced Raman scattering scaffold for antibiotics identification [J]. Journal of Materials Chemistry C, 2015, 3 (29): 7575-7582.
[13] TAYLOR R W, LEE T C, SCHERMAN O A, et al. Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit [n] uril “glue” [J]. ACS Nano, 2011, 5 (5): 3878-3887.
[14] CHEN J M, GUO L H, CHEN L F, et al. Sensing of hydrogen sulfide gas in the Raman-silent region based on gold nano-bipyramids (Au NBPs) encapsulated by zeolitic imidazolate framework-8 [J]. ACS Sensors, 2020, 5 (12): 3964-3970.
[15] REN X H, CHESHARI E C, QI J Y, et al. Silver microspheres coated with a molecularly imprinted polymer as a SERS substrate for sensitive detection of bisphenol A [J]. Microchimica Acta, 2018, 185:242:1-8.
[16] ASHLEY J, WU K Y, HANSEN M F, et al. Quantitative detection of trace level cloxacillin in food samples using magnetic molecularly imprinted polymer extraction and surface-enhanced Raman spectroscopy nanopillars [J]. Analytical Chemistry, 2017, 89 (21): 11484-11490.
[17] YANG Y Y, LI Y T, ZHAI W L, et al. Electrokinetic preseparation and molecularly imprinted trapping for highly selective SERS detection of charged phthalate plasticizers [J]. Analytical Chemistry,2021,93 (2): 946-955.
[18] SU J, WANG D F, NO?RBEL L, et al. Multicolor gold-silver nano-mushrooms as ready-to-use SERS probes for ultrasensitive and multiplex DNA/miRNA detection. [J]. Analytical Chemistry 2017, 89 (4): 2531-2538.
[19] WANG Z Y, ZONG S F, WU L, et al. SERS-activated platforms for immunoassay: probes, encoding methods, and applications [J]. Chemical Reviews, 2017, 117 (12): 7910-7963.
[20] CAO Y W C, JIN R C, MIRKIN C A. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection [J]. Science,2002,297(5586): 1536-1540.
[21] LEE M, LEE K, KIM K H, et al. SERS-based immunoassay using a gold array-embedded gradient microfluidic chip [J]. Lab on a Chip,2012,12 (19): 3720-3727.
[22] GAO W C, LI B, YAO R Z, et al. Intuitive label-free SERS detection of bacteria using aptamer-based in situ silver nanoparticles synthesis [J]. Analytical Chemistry, 2017, 89 (18): 9836-9842.
[23] 郑思洁,李向葵,曹飘扬,等.多孔有机聚合物在固相萃取应用中的研究进展[J].武汉工程大学学报,2021,43(2):155-162.
[24] 陈丹,王春琼,杨德志,等.基于双面透明胶带/AuNPs基底的表面增强拉曼光谱检测烟草中仲丁灵[J].分析试验室,2022,41(5):535-538.
[25] OUYANG L, ZHANG Q, MA G N, et al. A new dual-spectroscopic strategy for the direct detection of aristolochic acids in blood and tissue [J]. Analytical Chemistry, 2019, 92(13): 8154-8161.
[26] MARKINA N E, MARKIN A V, ZAKHAREVICH A M, et al. Calcium carbonate microparticles with embedded silver and magnetite nanoparticles as new SERS-active sorbent for solid phase extraction [J]. Microchimica Acta, 2017, 184 (10): 3937-3944.
[27] FENG J F, HU Y X, GRANT E, et al. Determination of thiabendazole in orange juice using an MISPE-SERS chemosensor [J]. Food Chemistry,2018, 239: 816-822.
[28] 来永超,陈静,占金华.萃取-表面增强拉曼光谱联用技术及其在有害物质检测领域的应用[J].中国科学:化学, 2021, 51: 665-678.
[29] YU S H, LIU Z G, WANG W X, et al. Disperse magnetic solid phase microextraction and surface enhanced Raman scattering (Dis-MSPME-SERS) for the rapid detection of trace illegally chemicals [J]. Talanta, 2018, 178: 498-506.
[30] LIU Z G, WANG Y, DENG R, et al. Fe3O4@ graphene oxide@Ag particles for surface magnet solid-phase extraction surface-enhanced Raman scattering (SMSPE-SERS): from sample pretreatment to detection all-in-one [J]. ACS Applied Materials & Interfaces, 2016, 8 (22): 14160-14168.
[31] PLATANIA E, LOFRUMENTO C, LOTTINI E, et al. Tailored micro-extraction method for Raman/SERS detection of indigoids in ancient textiles [J]. Analytical and Bioanalytical Chemistry, 2015, 407 (21): 6505-6514.
[32] OUYANG L, DAI P, YAO L, et al. A functional Au array SERS chip for the fast inspection of pesticides in conjunction with surface extraction and coordination transferring [J]. Analyst, 2019, 144 (18): 5528-5537.
[33] XIA Z P, LI D, DENG W. Identification and detection of volatile aldehydes as lung cancer biomarkers by vapor generation combined with paper-based thin-film microextraction [J]. Analytical Chemistry, 2021, 93 (11): 4924-4931.
[34] MORELLI L, ANDREASEN S Z, Jendresen C B, et al. Quantification of a bacterial secondary metabolite by SERS combined with SLM extraction for bioprocess monitoring [J]. Analyst, 2017, 142 (23): 4553-4559.
[35] SUBAIHI A, TRIVEDI D K, HOLLYWOOD K A, et al. Quantitative online liquid chromatography-surface-enhanced Raman scattering (LC-SERS) of methotrexate and its major metabolites [J]. Analytical Chemistry, 2017, 89 (12): 6702-6709.
[36] XIAO L F, WANG C Q, DAI C, et al. Untargeted tumor metabolomics with liquid chromatography-surface-enhanced Raman spectroscopy [J]. Angewandte Chemie (International Edition), 2020, 59 (9): 3439-3443.
[37] P?IKRYL J, KLEPáRNíK K, FORET F. Photodepo-sited silver nanoparticles for on-column surface-enhanced Raman spectrometry detection in capillary electrophoresis [J]. Journal of Chromatography A, 2012, 1226: 43-47.
[38] LI D W, QU L L, ZHAI W L, et al. Facile on-site detection of substituted aromatic pollutants in water using thin layer chromatography combined with surface-enhanced Raman spectroscopy [J]. Environmental Science & Technology, 2011,45 (9): 4046-4052.
[39] ZOU Y X, ZHANG Y L, XU Y T, et al. Portable and label-free detection of blood bilirubin with graphene-isolated-Au-nanocrystals paper strip [J]. Analytical Chemistry, 2018, 90 (22): 13687-13694.
[40] WANG X K, CHOI N, CHENG Z Y, et al. Simultaneous detection of dual nucleic acids using a SERS-based lateral flow assay biosensor [J]. Analytical Chemistry, 2016, 89 (2): 1163-1169.
[41] GAO X F, BORYCZKA J, KASANI S, et al. Enabling direct protein detection in a drop of whole blood with an “on-strip” plasma separation unit in a paper-based lateral flow strip [J]. Analytical Chemistry, 2021, 93 (3): 1326-1332.
[42] TRAN V, WALKENFORT B, K?NIG M, et al. Rapid, quantitative, and ultrasensitive point‐of‐care testing: a portable SERS reader for lateral flow assays in clinical chemistry [J]. Angewandte Chemie (International Edition), 2019, 58 (2): 442-446.
[43] 杨鑫,郭鹏程,徐传围,等.便携式拉曼光谱仪结合化学计量法的水质分析[J].武汉工程大学学报,2020,42(1):28-32.
[44] ZENG Y, REN J Q, SHEN A G, et al. Splicing nanoparticles-based “click” SERS could aid multiplex liquid biopsy and accurate cellular imaging [J]. Journal of American Chemical Society, 2018, 140:10649-10652.

相似文献/References:

[1]李金津,胡宏宇,王弘圣,等.液相色谱法测定土壤中四环素含量前处理方法的优化[J].武汉工程大学学报,2022,44(01):81.[doi:10.19843/j.cnki.CN42-1779/TQ. 202106009]
 LI Jinjin,HU Hongyu,WANG Hongsheng,et al.Improvement of Pretreatment for Determination of Content of Tetracycline in Soil with Liquid Chromatography[J].Journal of Wuhan Institute of Technology,2022,44(05):81.[doi:10.19843/j.cnki.CN42-1779/TQ. 202106009]

备注/Memo

备注/Memo:
收稿日期:2021-03-25
基金项目:国家自然科学基金(22106147);湖北省自然科学基金(2021CFB131);武汉市知识创新专项基金(2022020801020218)
作者简介:欧阳磊,博士,副教授。E-mail:ouyanglei@cug.edu.cn
引文格式:欧阳磊,朱丽华,帅琴. 适用于表面增强拉曼光谱的样品前处理方法研究进展[J]. 武汉工程大学学报,2023,45(5):473-481.
更新日期/Last Update: 2023-10-25