|本期目录/Table of Contents|

[1]门慧瑶,余艳秋,刘善堂*.铜掺杂二氧化锡纳米片对乙醇的气敏性能研究[J].武汉工程大学学报,2023,45(04):429-434.[doi:10.19843/j.cnki.CN42-1779/TQ.202206009]
 MEN Huiyao,YU Yanqiu,LIU Shantang*.Gas Sensing Properties of Cu-Doped Stannic Oxide Nanosheets for Ethanol[J].Journal of Wuhan Institute of Technology,2023,45(04):429-434.[doi:10.19843/j.cnki.CN42-1779/TQ.202206009]
点击复制

铜掺杂二氧化锡纳米片对乙醇的气敏性能研究(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
45
期数:
2023年04期
页码:
429-434
栏目:
生物与环境工程
出版日期:
2023-08-31

文章信息/Info

Title:
Gas Sensing Properties of Cu-Doped Stannic Oxide Nanosheets for Ethanol
文章编号:
1674 - 2869(2023)04 - 0429 - 06
作者:
门慧瑶余艳秋刘善堂*
武汉工程大学化学与环境工程学院,绿色化工过程教育部重点实验室(武汉工程大学),
湖北 武汉 430205

Author(s):
MEN Huiyao YU Yanqiu LIU Shantang*
School of Chemistry and Environmental Engineering , Wuhan Institute of Technology ; Key Laboratory of Green Chemical
Process (Wuhan Institute of Technology), Ministry of Education , Wuhan 430205,China

关键词:
掺杂乙醇二氧化锡选择性
Keywords:
doping ethanol stannic oxide selectivity
分类号:
O64
DOI:
10.19843/j.cnki.CN42-1779/TQ.202206009
文献标志码:
A
摘要:
为解决摄入高浓度乙醇对身体健康产生的危害,并且乙醇蒸汽与空气混合在高温环境下容易发生爆炸的问题,以十六烷基三甲基溴化铵为结构指导剂,在水热条件下合成了铜(Cu)掺杂的二氧化锡(SnO2)树叶状纳米材料,通过X射线衍射、扫描电子显微镜以及X射线光电子能谱对材料进行表征。气敏测试结果表明:当铜掺杂量为摩尔分数2% 时,这种SnO2对乙醇的气敏响应最佳。具体表现为:在250 ℃的工作温度下,对体积分数为1×10-6乙醇的响应值(Ra/Rg)高达139.65,较纯SnO2传感器材料的响应值提高了近5倍。此外,该材料还对乙醇表现出良好的选择性,这主要是由于这种材料表面具有丰富的表面吸附氧。此项研究表明合理的元素掺杂是提升气体敏感性能的一种有效策略。

Abstract:
High concentration of ethanol causes great harm to people’s health, and the ethanol vapor mixed with air may explode at high temperature. In this study, we used a hydrothermal method to synthesize the Cu-doped leaf-like stannic oxide (SnO2) nanomaterials,through using hexadecyl trimethyl ammonium bromide as structural guide. The prepared materials were characterized by X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy. The experiment results show that the SnO2 nanostructure has the best gas sensing response to ethanol when the amount of Cu doping is 2%. The specific performance is as follows: at the working temperature of 250 ℃, the response value to 1×10-6 ethanol is up to 139.65, which is about 5 times higher than that of pure SnO2 sensor materials. In addition, the synthesized material also shows good selectivity for ethanol, which is due to the rich surface adsorption oxygen on the surface of this material. This study shows that reasonable element doping is an effective method to improve gas sensitivity.

参考文献/References:

[1] ZHU L, LI Y Q, ZENG W. Hydrothermal synthesis of hierarchical flower-like ZnO nanostructure and its enhanced ethanol gas-sensing properties[J]. Applied Surface Science, 2018,427:281-287.

[2] CHEN Y, ZHANG Y, ZHANG H Y, et al. Design and evaluation of Cu-modified ZnO microspheres as a high performance formaldehyde sensor based on density functional theory[J]. Applied Surface Science, 2020,532:147446:1-10.
[3] SISMAN O, ZAPPA D, BOLLI E, et al. Influence of iron and nitrogen ion beam exposure on the gas sensing properties of CuO nanowires[J]. Sensors and Actuators B:Chemical, 2020,321:128579:1-9.
[4] MNETHU O, NKOSI S S, KORTIDIS I, et al. Ultra-sensitive and selective p-xylene gas sensor at low operating temperature utilizing Zn doped CuO nanoplatelets: insignificant vestiges of oxygen vacancies[J]. Journal of Colloid and Interface Science, 2020,576:364-375.
[5] ACHARYYA S, JANA B, NAG S, et al. Single resistive sensor for selective detection of multiple VOCs employing SnO2 hollowspheres and machine learning algorithm: a proof of concept[J]. Sensors and Actuators B:Chemical, 2020,321:128484:1-11.
[6] KIM J H, KIM J Y, LEE J H, et al. Indium-implantation-induced enhancement of gas sensing behaviors of SnO2 nanowires by the formation of homo-core-shell structure[J]. Sensors and Actuators B:Chemical, 2020,321:128475:1-10.
[7] TAO Z H, LI Y W, ZHANG B, et al. Bi-doped urchin-like In2O3 hollow spheres: synthesis and improved gas sensing and visible-light photocatalytic properties[J]. Sensors and Actuators B:Chemical, 2020,321:128623:1-11.
[8] JUN L, CHEN Q, FU W H, et al. Electrospun Yb-doped In2O3 nanofiber field-effect transistors for highly sensitive ethanol sensors[J]. ACS Applied Materials & Interfaces, 2020,12(34):38425-38434.
[9] BHARDWAJ N, PANDEY A, SATPATI B, et al. Enhanced CO gas sensing properties of Cu doped SnO2 nanostructures prepared by a facile wet chemical method[J]. Physical Chemistry Chemical Physics, 2016,18(28):18846-18854.
[10] LI G Z, YU Y G, PAN Z F, et al. Two-dimensional layered SnO2 nanosheets for ambient ammonia synthesis[J]. ACS Applied Energy Materials, 2020,3(7):6735-6742.
[11] LI J,JIAO J Q, ZHANG H C, et al. Two-dimensional SnO2 nanosheets for efficient carbon dioxide electroreduction to formate[J]. ACS Sustainable Chemistry & Engineering, 2020,8(12):4975-4982.
[12] TONEZZER M. Selective gas sensor based on one single SnO2 nanowire[J]. Sensors and Actuators B:Chemical, 2019,288:53-59.
[13] MENG F L, LIAO Z J, XING C X, et al. Preparation of SnO2/SiO2 nanocomposites by sol-gel method for enhancing the gas sensing performance to triethylamine[J]. Journal of Alloys and Compounds, 2022,893:162189:1-7.
[14] LI C, LIU Y X, WAN W J, et al. Hydrothermal synthesis of novel porous butterfly-like hierarchical SnO2 architecture with excellent gas-sensing performance to acetaldehyde[J]. Sensors and Actuators B:Chemical, 2020,318(112):128209:1-16.
[15] KOU X Y, MENG F Q, CHEN K, et al. High-performance acetone gas sensor based on Ru-doped SnO2 nanofibers[J]. Sensors and Actuators B:Chemical, 2020,320:128292:1-8.
[16] JIN W X, MA S Y, TIE Z Z, et al. One-step synthesis and highly gas-sensing properties of hierarchical Cu-doped SnO2 nanoflowers[J]. Sensors and Actuators B: Chemical, 2015,213:171-180.
[17] KIM S H, SINGH G P, OH M, et al. An analysis of a highly sensitive and selective hydrogen gas sensor based on a 3D Cu-doped SnO2 sensing material by efficient electronic sensor interface[J]. ACS Sensors, 2021,6(11):4145-4155.
[18] ZHAO C H, GONG H M, NIU G Q, et al. Ultrasensitive SO2 sensor for sub-ppm detection using Cu-doped SnO2 nanosheet arrays directly grown on chip[J]. Sensors and Actuators B:Chemical, 2020,324:128745:1-9.

相似文献/References:

[1]舒绍明,刘翎玥,刘善堂*.偏锡酸锌空心立方体的合成及其乙醇气敏性能[J].武汉工程大学学报,2017,39(02):141.[doi:10. 3969/j. issn. 1674?2869. 2017. 02. 007]
 SHU Shaoming,LIU Lingyue,LIU Shantang*.Fabrication of Zinc Stannate Hollow Cubes and Their Sensing Properties for Ethanol[J].Journal of Wuhan Institute of Technology,2017,39(04):141.[doi:10. 3969/j. issn. 1674?2869. 2017. 02. 007]
[2]贺 胜,林志东*.纳米Co3O4的制备及其臭氧辅助下对乙醇的气敏性能[J].武汉工程大学学报,2021,43(06):622.[doi:10.19843/j.cnki.CN42-1779/TQ.202009019]
 HE Sheng,LIN Zhidong*.Preparation of Nano-Co3O4 and Gas-Sensitive Properties of Ethanol with Aid of Ozone[J].Journal of Wuhan Institute of Technology,2021,43(04):622.[doi:10.19843/j.cnki.CN42-1779/TQ.202009019]
[3]苏小雅,马 强,张尹萌,等.顶空气相色谱法测定磷霉素氨基葡萄糖盐残留的研究[J].武汉工程大学学报,2022,44(03):279.[doi:10.19843/j.cnki.CN42-1779/TQ.202109002]
 SU Xiaoya,MA Qiang,ZHANG Yinmeng,et al.Determination of Fosfomycin Glucosamine Salt Residue by Headspace Gas Chromatography[J].Journal of Wuhan Institute of Technology,2022,44(04):279.[doi:10.19843/j.cnki.CN42-1779/TQ.202109002]

备注/Memo

备注/Memo:
收稿日期:2022-06-06
基金项目:武汉工程大学研究生教育创新基金(CX2020269)
作者简介:门慧瑶,硕士研究生。E-mail:1105128740@qq.com
*通讯作者:刘善堂,博士,教授。 E-mail:stliu@wit.edu.cn
引文格式:门慧瑶,余艳秋,刘善堂. 铜掺杂二氧化锡纳米片对乙醇的气敏性能研究[J]. 武汉工程大学学报,2023,45(4):429-434.
更新日期/Last Update: 2023-08-31