|本期目录/Table of Contents|

[1]曹冬冬,樊昊心*.土壤碳氮磷硫循环对温度的响应[J].武汉工程大学学报,2023,45(04):423-428.[doi:10.19843/j.cnki.CN42-1779/TQ.202304020]
 CAO Dongdong,FAN Haoxin*.Temperature Responses of Microbial Carbon, Nitrogen, Phosphorus, andSulfur Cycles in Soil[J].Journal of Wuhan Institute of Technology,2023,45(04):423-428.[doi:10.19843/j.cnki.CN42-1779/TQ.202304020]
点击复制

土壤碳氮磷硫循环对温度的响应(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
45
期数:
2023年04期
页码:
423-428
栏目:
生物与环境工程
出版日期:
2023-08-31

文章信息/Info

Title:
Temperature Responses of Microbial Carbon, Nitrogen, Phosphorus, and
Sulfur Cycles in Soil
文章编号:
1674 - 2869(2023)04 - 0423 - 06
作者:
曹冬冬樊昊心*
武汉工程大学环境生态与生物工程学院,湖北 武汉 430205
Author(s):
CAO Dongdong FAN Haoxin*
School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology,Wuhan 430205, China
关键词:
土壤温度变化土壤微生物元素循环高通量定量聚合酶链式反应
Keywords:
soil temperature variation soil microbial element cycling high-throughput quantitative polymerase chain reaction
分类号:
X172
DOI:
10.19843/j.cnki.CN42-1779/TQ.202304020
文献标志码:
A
摘要:
温度是影响土壤中微生物介导的元素生物地球化学循环的重要因素。以广东省茂名市的稻田土壤为研究对象,利用高通量功能基因芯片对71种土壤元素循环相关的功能基因丰度进行测定并结合温度和培养时间等因子,研究了水稻土中微生物介导的碳、氮、磷、硫循环对温度的响应。结果表明:在检测的71种碳、氮、磷、硫相关基因中,63%的功能基因的丰度在35 ℃的培养温度中显著升高,并且这种趋势伴随培养时间的增加而显著增加。其中氮循环中的氨氧化过程中的amoA 基因对温度的响应最为明显,响应比分别为35 ℃/15 ℃的(12.79 ± 1.82)和35 ℃/25 ℃的(8.44 ± 1.79)。揭示了土壤碳氮磷硫循环关键功能基因丰度对温度的响应特征,也为温度变化引起土壤微生物元素化学循环变化趋势的理论研究提供了基础。

Abstract:
Temperature is an important factor influencing the microbially mediated nutrient cycles in soil. In this study, a paddy soil collected in Maoming City, Guangdong Province was selected as the research object. The effect of temperature on the abundance of 71 functional genes related to soil element cycling was determined using high-throughput functional gene chips. The results show that among the 71 detected carbon, nitrogen, phosphorus,and sulfur cycling related genes, the abundance of 63% of functional genes significantly increases at a cultivation temperature of 35 ℃, and this trend further increases with the prolongation of incubation time. Among them, the abundance of amoA gene involved in the nitrification process in the nitrogen cycle shows the most significant response to temperature, with response ratios of (12.79 ± 1.82) (35 ℃/15 ℃) and (8.44 ± 1.79) (35 ℃/25 ℃). The study reveals the response characteristics of key functional gene abundance in soil carbon, nitrogen, phosphorus, and sulfur cycles to temperature, providing a foundation for theoretical research on the trends of soil microbial element cycling caused by temperature variations.

参考文献/References:

[1] VAN DER HEIJDEN M G A, BARDGETT R D, VAN STRAALEN N M. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems [J]. Ecology Letters, 2008, 11(3): 296-310.

[2] BARDGETT R D, VAN DER PUTTEN W H. Belowground biodiversity and ecosystem functioning [J]. Nature, 2014, 515(7528): 505-511.
[3] KIRSCHBAUM M U F. The temperature dependence of organic-matter decomposition-still a topic of debate [J]. Soil Biology and Biochemistry, 2006, 38(9): 2510-2518.
[4] WIEDER W R, BONAN G B, ALLISON S D. Global soil carbon projections are improved by modelling microbial processes [J]. Nature Climate Change ,2013,3:909-912.
[5] KUYPERS M M M, MARCHANT H K, KARTAL B. The microbial nitrogen-cycling network [J]. Nature Reviews Microbiology, 2018, 16(5): 263-276.
[6] FENG W T, LIANG J Y, HALE L E, et al. Enhanced decomposition of stable soil organic carbon and microbial catabolic potentials by long-term field warming [J]. Global Change Biology, 2017, 23(11): 4765-4776.
[7] 张洁洁, Anders, 陈显轲, 等. 基于QMEC分析的青藏高原不同类型冰川前缘地土壤微生物功能潜力[J].环境科学,2023,44(1):512-519.
[8] 李宁, 李丽红, 米文强, 等. 荧光定量PCR测定粗品肝素钠DNA提取液中反刍基因及猪基因的浓度[J].化学与生物工程,2021,38(1):65-68.
[9] ZHENG B X, ZHU Y G, SARDANS J, et al. QMEC: a tool for high-throughput quantitative assessment of microbial functional potential in C, N, P, and S biogeochemical cycling[J]. Science China-life Sciences, 2018, 61(12): 1451-1462.
[10] 李小玥, 姚槐应, 葛超荣. 人工养殖南美白对虾中副溶血弧菌的分离鉴定及抗生素耐药性分析[J].武汉工程大学学报,2022,44(6):658-663.
[11] LI Z, ZENG Z, TIAN D, et al. Global patterns and controlling factors of soil nitrification rate [J]. Global Change Biology, 2020, 26(7): 4147-4157.
[12] XU X, LIU X, LI Y, et al. High temperatures inhibited the growth of soil bacteria and archaea but not that of fungi and altered nitrous oxide production mechanisms from different nitrogen sources in an acidic soil [J]. Soil Biology and Biochemistry, 2017, 107: 168-179.
[13] BAHRAM M, HILDEBRAND F, FORSLUND S K, et al. Structure and function of the global topsoil microbiome [J]. Nature, 2018, 560(7717):233-237.
[14]DELGADO BAQUERIZO M, BISSETT A, ELDRIDGE D J, et al. Palaeoclimate explains a unique proportion of the global variation in soil bacterial communities [J]. Nature Ecology and Evolution, 2017, 1(9): 1339-1347.
[15] CHEN X, TANG J, JIANG L, et al. Evaluating the impacts of incubation procedures on estimated Q10 values of soil respiration [J]. Soil Biology and Biochemistry, 2010, 42(12): 2282-2288.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2023-04-13
基金项目:国家自然科学基金(4207039)
作者简介:曹冬冬,硕士研究生。E-mail:254581341@qqcom
*通讯作者:樊昊心,博士,副教授。E-mail: haoxin. fan@wit.edu.cn
引文格式:曹冬冬,樊昊心. 土壤碳氮磷硫循环对温度的响应[J]. 武汉工程大学学报,2023,45(4):423-428.
更新日期/Last Update: 2023-08-31