|本期目录/Table of Contents|

[1]王 东,杨圣雄,肖 健,等.用于电解水制氢的MXene基电催化剂的研究进展[J].武汉工程大学学报,2023,45(04):364-377.[doi:10.19843/j.cnki.CN42-1779/TQ.202209001]
 WANG Dong,YANG Shengxiong,XIAO Jian,et al.Research Progress in MXene-Based Electrocatalysts forHydrogen Production from Water Electrolysis[J].Journal of Wuhan Institute of Technology,2023,45(04):364-377.[doi:10.19843/j.cnki.CN42-1779/TQ.202209001]
点击复制

用于电解水制氢的MXene基电催化剂的研究进展(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
45
期数:
2023年04期
页码:
364-377
栏目:
综述
出版日期:
2023-08-31

文章信息/Info

Title:
Research Progress in MXene-Based Electrocatalysts for
Hydrogen Production from Water Electrolysis
文章编号:
1674 - 2869(2023)04 - 0364 - 14
作者:
王 东1杨圣雄2肖 健3王贵生4肖军武2孙义民*1
1. 等离子体化学与新材料湖北省重点实验室(武汉工程大学),湖北 武汉 430205;
2. 华中科技大学化学与化工学院,能量转换与储存材料化学教育部重点实验室,湖北 武汉 430074;
3. 武汉工程大学化工与制药学院,湖北 武汉 430205;
4. 中国石化胜利油田安全环保质量管理部能源环境办公室,山东 东营 257001
Author(s):
WANG Dong1YANG Shengxiong2XIAO Jian3WANG Guisheng4XIAO Junwu2SUN Yimin*1
1. Hubei Key Laboratory of Plasma Chemistry and Advanced Materials(Wuhan Institute of Technology),Wuhan 430205,China;
2. Key Laboratory of Material Chemistry for Energy Conversion and Storage,Ministry of Education,School of Chemistry and Chemical Engineering,Huazhong University of Science and Technology,Wuhan 430074,China;
3. School of Chemical Engineering and Pharmacy,Wuhan Institute of Technology,Wuhan 430205,China;
关键词:
MXene电解水析氢反应析氧反应
Keywords:
MXene water electrolysis hydrogen evolution reaction oxygen evolution reaction

分类号:
TQ127
DOI:
10.19843/j.cnki.CN42-1779/TQ.202209001
文献标志码:
A
摘要:
MXene因其优异的物理和化学特性,在电解水领域极具应用潜力。对电解水阴极析氢反应和阳极析氧反应中使用的MXene基材料进行了归纳和总结,通过分析可知,非金属元素掺杂、单/多金属元素负载以及结构设计等策略,已成为提高MXene电催化性能强有力的手段。此外,针对MXene在构建电解水催化剂中存在的缺点,诸如种类有限、表面基团不可控、易氧化、污染性等,提出了开发MXene新种类、寻找新型合成方法、与纳米材料复合增强稳定性以及采用无氟环保刻蚀剂等应对策略。

Abstract:
MXene possesses great potential for water electrolysis application due to its excellent physical and chemical properties. In this paper,MXene-based composites used in hydrogen evolution reaction and anode oxygen evolution reaction were summarized. Through the analysis,we can see that non-metal element doping,single/multi-metal element loading and the structure design have become powerful means to improve the performance of MXenes electrocatalysis. Aiming at the shortcomings of MXene in the construction of electrolytic water catalyst,such as limited species,uncontrollable surface groups,easy oxidation and pollution, we propose the corresponding coping strategies,i.e. developing new types of MXene,searching for new synthesis methods,compositing with nano-materials to enhance stability,and using fluorine-free environment-friendly etchants, to solve those problems.

参考文献/References:

[1] JIAO Y, ZHENG Y, DAVEY K, et al. Activity origin and catalyst design principles for electrocatalytic hydrogen evolution on heteroatom-doped graphene[J]. Nature Energy,2016,1:16130:1-9.

[2] QIN Q,CHEN L L,WEI T,et al. MoS2/NiS yolk-shell microsphere-based electrodes for overall water splitting and asymmetric supercapacitor [J]. Small,2019,15(29):1803639:1-13.
[3] YAN Y, XIA B Y, ZHAO B, et al. A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting [J]. Journal of Materials Chemistry A,2016,4(45):17587-17603.
[4] LIU Y, LI X, ZHANG Q H, et al. A general route to prepare low-ruthenium-content bimetallic electrocatalysts for pH-universal hydrogen evolution reaction by using carbon quantum dots [J]. Angewandte Chemie(International Edition),2020,59(4):1718-1726.
[5] WEI Y,ZHANG P,SOOMRO R A,et al. Advances in the synthesis of 2D MXenes [J]. Advanced Materials,2021,33(39):2103148:1-30.
[6] HANTANASIRISAKUL K,GOGOTSI Y. Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes) [J]. Advanced Materials,2018,30(52):1804779:1-30.
[7] KONG D S,WANG H T, CHA J J,et al. Synthesis of MoS2 and MoSe2 films with vertically aligned layers [J]. Nano Letters,2013,13(3):1341-1347.
[8] NAGUIB M,KURTOGLU M,PRESSER V,et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2 [J]. Advanced Materials,2011,23(37):4248-4253.
[9] HUANG X W,WU P Y. A facile,high-yield,and freeze-and-thaw-assisted approach to fabricate MXene with plentiful wrinkles and its application in on-chip micro-supercapacitors [J]. Advanced Functional Materials,2020,30(12):1910048:1-11.
[10] ALHABEB M, MALESKI K, MATHIS T S, et al. Selective etching of silicon from Ti3SiC2 (MAX) to obtain 2D titanium carbide (MXene) [J]. Angewandte Chemie(International Edition),2018,57(19):5444-5448.
[11] LIU F F,ZHOU A G,CHEN J F,et al. Preparation of Ti3C2 and Ti2C MXenes by fluoride salts etching and methane adsorptive properties [J]. Applied Surface Science,2017,416:781-789.
[12] KAELSSON L H, BIRCH J, HALIM J, et al. Atomically resolved structural and chemical investigation of single MXene sheets [J]. Nano Letters,2015,15(8):4955-4960.
[13] HUSMANN S, BUDAK ?,SHIM H, et al. Ionic liquid-based synthesis of MXene [J]. Chemical Communications,2020,56:11082-11085.
[14] LI T F,YAO L L,LIU Q L,et al. Fluorine-free synthesis of high-purity Ti3C2Tx (T=OH,O) via alkali treatment [J]. Angewandte Chemie(International Edition),2018,57(21):6115-6119.
[15] PENG C,WEI P,CHEN X, et al. A hydrothermal etching route to synthesis of 2D MXene (Ti3C2,Nb2C):enhanced exfoliation and improved adsorption performance [J]. Ceramics International,2018,44(15):18886-18893.
[16] SUN W,SHAH S A,CHEN Y,et al. Electrochemical etching of Ti2AlC to Ti2CTX (MXene) in low-concentration hydrochloric acid solution [J]. Journal of Materials Chemistry A,2017,5(41):21663-21668.
[17] CONWAY B E,TILAK B V. Interfacial processes involving electrocatalytic evolution and oxidation of H2,and the role of chemisorbed H [J]. Electrochimica Acta,2002,47(22/23):3571-3594.
[18] JIAO Y,ZHENG Y,JARONIEC M,et al. Design of electrocatalysts for oxygen-and hydrogen-involving energy conversion reactions [J]. Chemical Society Reviews,2015,44(8):2060-2086.
[19] YIN H J, ZHAO S L, ZHAO K, et al. Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity [J]. Nature Communications,2015,6:6430:1-8.
[20] SEH Z W,FREDRICKSON K D,ANASORI B,et al. Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution [J]. ACS Energy Letters,2016,1(3):589-594.
[21] YUAN W Y,CHENG L F,AN Y R,et al. MXene nanofibers as highly active catalysts for hydrogen evolution reaction [J]. ACS Sustainable Chemistry & Engineering,2018,6(7):8976-8982.
[22] HANDOKO A D,FREDRICKSON K D,ANASORI B,et al. Tuning the basal plane functionalization of two-dimensional metal carbides (MXenes) to control hydrogen evolution activity [J]. ACS Applied Energy Materials,2018,1(1):173-180.
[23] JIANG Y N, SUN T, XIE X, et al. Oxygen-functionalized ultrathin Ti3C2TX MXene for enhanced electrocatalytic hydrogen evolution [J]. ChemSusChem,2019,12(7):1368-1373.
[24] WANG X,WANG S G,QIN J W,et al. Constructing conductive bridge arrays between Ti3C2TX MXene nanosheets for high-performance lithium-ion batteries and highly efficient hydrogen evolution [J]. Inorganic Chemistry,2019,58(24):16524-16536.
[25] WEN Y Y, RUFFORD T E, CHEN X Z, et al. Nitrogen-doped Ti3C2TX MXene electrodes for high-performance supercapacitors [J]. Nano Energy,2017,38:368-376.
[26] YOON Y, LEE M, KIM S K, et al. A strategy for synthesis of carbon nitride induced chemically doped 2D MXene for high-performance supercapacitor electrodes [J]. Advanced Energy Materials,2018,8(15):1703173:1-11.
[27] YUAN Z Y,WANG L L,CAO J M,et al. Ultraviolet-assisted construction of nitrogen-rich Ag@Ti3C2TX MXene for highly efficient hydrogen evolution electrocatalysis and supercapacitor [J]. Advanced Materials Interfaces,2020,7(23):2001449:1-9.
[28] XU Y H,WANG Z T,GUO Z N,et al. Solvothermal synthesis and ultrafast photonics of black phosphorus quantum dots [J]. Advanced Optical Materials,2016,4(8):1223-1229.
[29] ZHU X D,XIE Y,LIU Y T. Exploring the synergy of 2D MXene-supported black phosphorus quantum dots in hydrogen and oxygen evolution reactions [J]. Journal of Materials Chemistry A,2018,6(43):21255-21260.
[30] LIU S,TIAN N,XIE A Y,et al. Electrochemically seed-mediated synthesis of sub-10 nm tetrahexahedral Pt nanocrystals supported on graphene with improved catalytic performance [J]. Journal of the American Chemical Society,2016,138(18):5753-5756.
[31] YUAN Y Y,LI H S,WANG L G,et al. Achieving highly efficient catalysts for hydrogen evolution reaction by electronic state modification of platinum on versatile Ti3C2TX (MXene) [J]. ACS Sustainable Chemistry & Engineering,2019,7(4):4266-4273.
[32] CUI C, CHENG R F, ZHANG H,et al. Ultrastable MXene@Pt/SWCNTs’ nanocatalysts for hydrogen evolution reaction [J]. Advanced Functional Materials,2020,30(47):2000693:1-8.
[33] CUI B B,HU B, LIU J M, et al. Solution-plasma-assisted bimetallic oxide alloy nanoparticles of Pt and Pd embedded within two-dimensional Ti3C2Tx
nanosheets as highly active electrocatalysts for overall water splitting [J]. ACS Applied Materials & Interfaces,2018,10(28):23858-23873.
[34] WANG Y J, WANG J K, HAN G K, et al. Pt decorated Ti3C2 MXene for enhanced methanol oxidation reaction [J]. Ceramics International,2019,45(2):2411-2417.
[35] DOU Y H, LIAO T, MA Z Q, et al. Graphene-like holey Co3O4 nanosheets as a highly efficient catalyst for oxygen evolution reaction [J]. Nano Energy,2016,30:267-275.
[36] JIANG H M,WANG Z G,YANG Q,et al. Ultrathin Ti3C2Tx (MXene) nanosheet-wrapped NiSe2 octahedral crystal for enhanced supercapacitor performance and synergetic electrocatalytic water splitting [J]. Nano-Micro Letters,2019,11:31:1-14.
[37] KUANG P Y, HE M, ZHU B C, et al. 0D/2D NiS2/V-MXene composite for electrocatalytic H2 evolution [J]. Journal of Catalysis,2019,375:8-20.
[38] YU M Z,WANG Z Y,LIU J S,et al. A hierarchically porous and hydrophilic 3D nickel-iron/MXene electrode for accelerating oxygen and hydrogen evolution at high current densities [J]. Nano Energy,2019,63:103880:1-8.
[39] TIE L N,LI N, YU C F, et al. Self-supported nonprecious MXene/Ni3S2 electrocatalysts for efficient hydrogen generation in alkaline media [J]. ACS Applied Energy Materials,2019,2(9):6931-6938.
[40] LIANG J M,DING C Y,LIU J P,et al. Heterostructure engineering of Co-doped MoS2 coupled with Mo2CTx
MXene for enhanced hydrogen evolution in alkaline media [J]. Nanoscale,2019,11(22):10992-11000.
[41] CHENG N C,STAMBULA S,WANG D,et al. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction [J]. Nature Communi-cations,2016,7:13638:1-9.
[42] RAMALINGAM V,VARADHAN P,FU H C,et al. Heteroatom-mediated interactions between ruthenium single atoms and an MXene support for efficient hydrogen evolution [J]. Advanced Materials,2019,31(48):1903841:1-10.
[43] WU X H,ZHOU S,WANG Z Y,et al. Engineering multifunctional collaborative catalytic interface enabling efficient hydrogen evolution in all pH range and seawater [J]. Advanced Energy Materials,2019,9(34):1901333:1-11.
[44] WU X H,WANG Z Y,YU M Z,et al. Stabilizing the MXenes by carbon nanoplating for developing hierarchical nanohybrids with efficient lithium storage and hydrogen evolution capability [J]. Advanced Materials,2017,29(24):1607017:1-8.
[45] ZANG X N,CHEN W S,ZOU X L,et al. Self-assembly of large-area 2D polycrystalline transition metal carbides for hydrogen electrocatalysis [J]. Advanced Materials,2018,30(50):1805188:1-8.
[46] YANG L,LIU Z,ZHU S,et al. Ni-based layered double hydroxide catalysts for oxygen evolution reaction [J]. Materials Today Physics,2021,16:100292:1-24.
[47] SHAN J Q,LING T,KENNETH D,et al. Transition-metal-doped RuIr bifunctional nanocrystals for overall water splitting in acidic environments [J]. Advanced Materials,2019,31(17):1900510:1-7.
[48] DANILOVIC N, SUBBARAMAN R, STRMCNIK D,et al. Enhancing the alkaline hydrogen evolution reaction activity through the bifunctionality of Ni(OH)2/metal catalysts [J]. Angewandte Chemie (International Edition),2012,51(50):12495-12498.
[49] ZHAO K X,MA X Z,LIN S Y,et al. Ambient growth of hierarchical FeOOH/MXene as enhanced electrocatalyst for oxygen evolution reaction [J]. Chemistry Select,2020,5(6):1890-1895.
[50] LI N B,WEI S T,XU Y C,et al. Synergetic enhancement of oxygen evolution reaction by Ti3C2TX nanosheets supported amorphous FeOOH quantum dots [J]. Electrochimica Acta,2018,290:364-368.
[51] LU Y,FAN D Q,CHEN Z P,et al. Anchoring Co3O4 nanoparticles on MXene for efficient electrocatalytic oxygen evolution [J]. Science Bulletin,2020,65(6):460-466.
[52] ZONG H, QI R J, YU K, et al. Ultrathin Ti2NTX MXene-wrapped MOF-derived CoP frameworks towards hydrogen evolution and water oxidation [J]. Electrochimica Acta,2021,393:139068:1-10.
[53] GUO D Z, LI X, JIAO Y Q, et al. A dual-active Co-CoO heterojunction coupled with Ti3C2-MXene for highly-performance overall water splitting [J]. Nano Research,2022,15(1):238-247.
[54] LIU S L,LIN Z S,WAN R D,et al. Cobalt phosphide supported by two-dimensional molybdenum carbide (MXene) for the hydrogen evolution reaction,oxygen evolution reaction,and overall water splitting [J]. Journal of Materials Chemistry A,2021,9(37):21259-21269.
[55] HAN S L,CHEN Y,HAO Y N,et al. Multi-dimensional hierarchical CoS2@MXene as trifunctional electrocatalysts for zinc-air batteries and overall water splitting [J]. Science China Materials,2021,64(5):1127-1138.
[56] Lü Z P,MA W S,DANG J,et al. Induction of Co2P growth on a MXene (Ti3C2TX)-modified self-supporting electrode for efficient overall water splitting [J]. The Journal of Physical Chemistry Letters,2021,12(20):4841-4848.
[57] TRAN P K L,KIM M S,NGUYEN T H,et al. Interfacial engineering for design of novel 2D cobalt sulfide-MXene heterostructured catalyst toward alkaline water splitting [J]. Functional Composites and Structures,2021,3(4):045005:1-8.
[58] BENCHAKAR M,BILYK T,GARNERO C,et al. MXene supported cobalt layered double hydroxide nanocrystals:facile synthesis route for a synergistic oxygen evolution reaction electrocatalyst [J]. Advanced Materials Interfaces,2019,6(23):1901328:1-11.
[59] ASHRAF I,AHMAD S,RIZWAN S,et al. Fabrication of Ti3C2@MoO3 nanocomposite as an electrode material for highly efficient and durable water splitting system [J]. Fuel,2021,299:120928:1-11.
[60] ZOU H Y, HE B W, KUANG P Y, et al. Metal-organic framework-derived nickel-cobalt sulfide on ultrathin MXene nanosheets for electrocatalytic oxygen evolution [J]. ACS Applied Materials & Interfaces,2018,10(26):22311-22319.
[61] WEN Y Y,WEI Z T,MA C,et al. MXene boosted CoNi-ZIF-67 as highly efficient electrocatalysts for oxygen evolution [J]. Nanomaterials,2019,9(5):775:1-10.
[62] LI X M,ZHANG Z L,XIANG Q K,et al. A three-dimensional flower-like NiCo-layered double hydroxide grown on nickel foam with an MXene coating for enhanced oxygen evolution reaction electrocatalysis [J]. RSC Advances,2021,11(20):12392-12397.
[63] WANG J Y, HE P L, SHEN Y L, et al. FeNi nanoparticles on Mo2TiC2Tx MXene@nickel foam as robust electrocatalysts for overall water splitting [J]. Nano Research,2021,14(10):3474-3481.
[64] SHINDE P V,MANE P,CHAKRABORTY B,et al. Spinel NiFe2O4 nanoparticles decorated 2D Ti3C2 MXene sheets for efficient water splitting:experiments and theories [J]. Journal of Colloid and Interface Science,2021,602:232-241.
[65] CHEN Y F,YAO H L,KONG F T,et al. V2C MXene synergistically coupling FeNi LDH nanosheets for boosting oxygen evolution reaction [J]. Applied Catalysis B:Environmental,2021,297:120474:1-11.
[66] ASEN P,ESFANDIAR A,MEHDIPOUR H. Urchin-like hierarchical ruthenium cobalt oxide nanosheets on Ti3C2Tx MXene as a binder-free bifunctional electrode for overall water splitting and supercapacitors [J]. Nanoscale,2022,14(4):1347-1362.
[67] YAN L,ZHANG B. Rose-like, ruthenium-modified cobalt nitride nanoflowers grown in situ on an MXene matrix for efficient and stable water electrolysis [J]. Journal of Materials Chemistry A,2021,9(36):20758-20765.
[68] YU M Z,ZHOU S,WANG Z Y,et al. Boosting electrocatalytic oxygen evolution by synergistically coupling layered double hydroxide with MXene [J]. Nano Energy,2018,44:181-190.
[69] CHEN J X,LONG Q W,XIAO K,et al. Vertically-interlaced NiFeP/MXene electrocatalyst with tunable electronic structure for high-efficiency oxygen evolution reaction [J]. Science Bulletin,2021,66(11):1063-1072.
[70] ZHU Z L,XU C X,WANG Y C,et al. The high performance NiFe layered double hydroxides@ Ti3C2Tx/reduced graphene oxide hybrid catalyst for oxygen evolution reaction [J]. Journal of Alloys and Compounds,2022,894:162393:1-6.
[71] DU C F, SUN X L, YU H, et al. V4C3TX MXene:a promising active substrate for reactive surface modification and the enhanced electrocatalytic oxygen evolution activity [J]. InfoMat,2020,2(5):950-959.
[72] HAO C Y,WU Y,AN Y J,et al. Interface-coupling of CoFe-LDH on MXene as high-performance oxygen evolution catalyst [J]. Materials Today Energy,2019,12:453-462.
[73] ZHANG C,DONG H F,CHEN B L,et al. 3D MXene anchored carbon nanotube as bifunctional and durable oxygen catalysts for Zn-air batteries [J]. Carbon,2021,185:17-26.
[74] HU L Y,LI M Y,WEI X Q, et al. Modulating interfacial electronic structure of CoNi LDH nanosheets with Ti3C2Tx MXene for enhancing water oxidation catalysis [J]. Chemical Engineering Journal,2020,398:125605:1-6.
[75] TANG Y,YANG C H,YANG Y W,et al. Three dimensional hierarchical network structure of S-NiFe2O4 modified few-layer titanium carbides (MXene) flakes on nickel foam as a high efficient electrocatalyst for oxygen evolution [J]. Electrochimica Acta,2019,296:762-770.
[76] WANG R,YANG Y,SUN Z P,et al. Ga doped Ni3S2 ultrathin nanosheet arrays supported on Ti3C2-MXene/Ni foam:an efficient and stable 3D electrocatalyst for oxygen evolution reaction [J]. International Journal of Hydrogen Energy,2022,47(5):2958-2966.
[77] HAO N X,WEI Y,WANG J L,et al. In situ hybridization of an MXene/TiO2/NiFeCo-layered double hydroxide composite for electrochemical and photoelectrochemical oxygen evolution [J]. RSC Advances,2018,8(37):20576-20584.
[78] WEN Y Y, WEI Z T, LIU J H, et al. Synergistic cerium doping and MXene coupling in layered double hydroxides as efficient electrocatalysts for oxygen evolution [J]. Journal of Energy Chemistry,2021,52:412-420.
[79] FARAJI M, ARIANPOUYA N. NiCoFe-layered double hydroxides/MXene/N-doped carbon nanotube composite as a high-performance bifunctional catalyst for oxygen electrocatalytic reactions in metal-air batteries [J]. Journal of Electroanalytical Chemistry,2021,901:115797:1-9.
[80] LIU L H,LI N,HAN J R,et al. Multicomponent transition metal phosphide for oxygen evolution [J]. International Journal of Minerals,Metallurgy and Materials,2022,29(3):503-512.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2022-09-02
基金项目:国家自然科学基金(51504168);湖北省教育厅科学研究计划指导性项目(B2021075);武汉工程大学第十三届研究生教育创新基金(CX2021152)
作者简介:王 东,硕士研究生。E-mail:dwangwit@163.com
*通讯作者:孙义民,博士,副教授。E-mail:ymsun@wit.edu.cn
引文格式:王东,杨圣雄,肖健,等. 用于电解水制氢的MXene基电催化剂的研究进展[J]. 武汉工程大学学报,2023,45(4):364-377,412.

更新日期/Last Update: 2023-08-31