|本期目录/Table of Contents|

[1]周宇能,彭 肖,周 婧,等.基于衰老相关基因的胶质瘤预后模型[J].武汉工程大学学报,2023,45(03):305-311.[doi:10.19843/j.cnki.CN42-1779/TQ.202208015]
 ZHOU Yuneng,PENG Xiao,ZHOU Jing,et al.Construction of Glioma Prognosis Model Based on Aging-Related Genes[J].Journal of Wuhan Institute of Technology,2023,45(03):305-311.[doi:10.19843/j.cnki.CN42-1779/TQ.202208015]
点击复制

基于衰老相关基因的胶质瘤预后模型(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
45
期数:
2023年03期
页码:
305-311
栏目:
生物与环境工程
出版日期:
2023-06-30

文章信息/Info

Title:
Construction of Glioma Prognosis Model Based on Aging-Related Genes
文章编号:
1674 - 2869(2023)03 - 0305 - 07
作者:
周宇能彭 肖周 婧朱 颖李 婧陈孝平*
武汉工程大学环境生态与生物工程学院,湖北 武汉 430205
Author(s):
ZHOU Yuneng PENG Xiao ZHOU Jing ZHU Ying LI Jing CHEN Xiaoping*
School of Environmental Ecology and Biological Engineering,Wuhan Institute of Technology,Wuhan 430205,China
关键词:
胶质瘤预后模型衰老基因生物信息学
Keywords:
glioma prognostic model aging gene bioinformatics
分类号:
R730.7
DOI:
10.19843/j.cnki.CN42-1779/TQ.202208015
文献标志码:
A
摘要:
利用生物信息学方法筛选与胶质瘤预后相关的衰老基因,并进行相关预后风险模型的构建与验证。首先,从中国脑胶质瘤基因组图谱数据库中获取胶质瘤患者的表达谱和临床信息,通过单因素回归、拉索回归、多因素回归的方法构建相关预后模型;其次使用外部数据集进行验证;再使用箱线图表明各临床亚型的风险评分差异;最后使用富集分析(GSEA)探讨可能涉及的机制。结果筛选出4个用于预后的基因。训练集和验证集的生存曲线显示,高风险组的总生存率显著低于低风险组(p<0.001)。受试者工作特征曲线分析结果显示,训练集在1、3和5 a的曲线下面积分别为0.91、0.95和0.95,验证集在1、3和5 a的曲线下面积分别为0.73、0.80和0.80,说明该模型对患者的预后预测具有很强的预测效能。临床亚型箱线图显示多种临床亚型分组的风险得分具有显著差异。GSEA分析富集的通路主要涉及JAK-STAT信号路径、P53信号通路、泛素介导的蛋白水解、长期电位富集等通路。以上结果表明这4个衰老相关基因可能为胶质瘤预后潜在的生物标志物。

Abstract:
Aging genes associated with glioma prognosis were screened by bioinformatics methods, and prognostic risk models were constructed and validated. Firstly, the expression profiles and clinical information of glioma patients were obtained from the Chinese glioma genome Atlas database, and the relevant prognostic models were constructed by univariate Cox regression analysis, lasso regression and multifactor Cox regression analysis. Secondly, validation was performed using an external data set. Boxplot plots were then used to show differences in risk scores among clinical subtypes. Finally, gene set enrichment analysis (GSEA) was used to explore the possible mechanisms involved. Results of four prognostic genes were selected. Survival curves in the training and validation sets showed that overall survival in the high-risk group is significantly lower than that in the low-risk group (p<0.001). The analysis results of the subjects’ working characteristic curves showed that the areas under the 1-year, 3-year and 5-year curves of the training set are 0.91, 0.95 and 0.95, respectively, and the areas under the 1-year, 3-year and 5-year curves of the verification set are 0.73, 0.80 and 0.80, respectively, indicating that the model has a strong predictive power on patient prognosis. Clinical subtype boxplot showed significant differences in risk scores among different clinical subtypes. GSEA enrichment pathways mainly involve JAK-STAT signaling pathway, P53 signaling pathway, ubiquitin-mediated proteolysis, long-term potential enrichment and other pathways. These results suggest that these four aging genes may be potential biomarkers for glioma prognosis.

参考文献/References:

[1] ESEMEN Y,AWAN M, PARWEZ R, et al. Molecular pathogenesis of glioblastoma in adults and future perspectives: a systematic review [J]. International Journal of Molecular Sciences,2022,23(5):2607-2627.

[2] WICK W, OSSWALD M, WICK A, et al. Treatment of glioblastoma in adults [J]. Therapeutic Advances in Neurological Disorders, 2018, 11: 1756286418790452: 1-13.
[3] LIU E K, SULMAN E P, WEN P Y, et al. Novel therapies for glioblastoma [J]. Current Neurology and Neuroscience Reports, 2020, 20: 1-12.
[4] MEDIKONDA R, DUNN G, RAHMAN M, et al. A review of glioblastoma immunotherapy [J]. Nature Reviews Neuroscience, 2021, 151(1): 41-53.
[5] JACKSON C M, CHOI J, LIM M. Mechanisms of immunotherapy resistance: lessons from glioblastoma [J]. Nature Immunology, 2019, 20(9): 1100-1109.
[6] YANG C B, ZHANG W, DONG X D, et al. A natural product solution to aging and aging-associated diseases [J]. Pharmacology & Therapeutics, 2020, 216: 107673-107690.
[7] HOU Y J, DAN X L, BABBAR M, et al. Ageing as a risk factor for neurodegenerative disease[J]. Nature Reviews Neurology, 2019, 15(10): 565-581.
[8] ATELLA V, PIANO MORTARI A, KOPINSKA J, et al. Trends in age-related disease burden and healthcare utilization [J]. Aging Cell,2018,18:e12861:1-8.
[9] FRANCESCHI C, GARAGNANI P, MORSIANI C, et al. The continuum of aging and age-related diseases: common mechanisms but different rates [J]. Frontiers in Medicine, 2018, 5: 61-84.
[10] NGUYEN H M, GUZ-MONTGOMERY K, LOWE D B, et al. Pathogenetic features and current management of glioblastoma [J]. Cancers, 2021, 13(4): 856-896.
[11] RAJARATNAM V, ISLAM M M, YANG M, et al. Glioblastoma: pathogenesis and current status of chemotherapy and other novel treatments [J]. Cancers, 2020, 12(4): 937-965.
[12] GNANAVEL M,MURUGESAN A,KONDA MANI S, et al. Identifying the mirna signature association with aging-related senescence in glioblastoma [J]. International Journal of Molecular Sciences, 2021, 22(2): 517-531.
[13] JAWHARI S, RATINAUD M H, VERDIER M. Glioblastoma, hypoxia and autophagy: a survival-prone “menage-a-trois”[J].Cell Death and Disease, 2016 (7):e2434:1-10.
[14] VENNETI S, THOMPSON C B. Metabolic reprogramming in brain tumors[J]. Annual Review of Pathology: Mechanisms of Disease, 2017, 12: 515-545.
[15] HARRISON R A, DE GROOT J F. Treatment of glioblastoma in the elderly [J]. Drugs Aging, 2018, 35(8): 707-718.
[16] WANG H W, WANG X R, XU L P, et al. Prognostic significance of age related genes in patients with lower grade glioma [J]. Journal of Cancer, 2020, 11(13): 3986-3999.
[17] LI L L, LIU Y G. Aging-related gene signature regulated by nlrp3 predicts glioma progression [J]. American Journal of Cancer Research, 2015, 5(1): 442-449.
[18] BRATTON S B, SALVESEN G S. Regulation of the apaf-1-caspase-9 apoptosome[J]. Journal of Cell Science, 2010, 123(19): 3209-3214.
[19] CAVALCANTE G C,SCHAAN A P, CABRAL G F, et al. A cell’s fate: an overview of the molecular biology and genetics of apoptosis [J]. International journal of molecular sciences, 2019, 20(17): 4133-4153.
[20] SAGA K, KANEDA Y. Oncolytic Sendai virus-based virotherapy for cancer: recent advances [J]. Oncolytic Virotherapy, 2015, 4: 141-147.
[21] SARGAZI S, ABGHARI A Z, SARANI H, et al. Relationship between casp9 and casp10 gene polymorphisms and cancer susceptibility: evidence from an updated meta-analysis [J]. Applied Biochemistry and Biotechnology, 2021, 193(12): 4172-4196.
[22] BACH D H, PARK H J, LEE S K. The dual role of bone morphogenetic proteins in cancer [J]. Molecular Therapy-Oncolytics, 2018, 8: 1-13.
[23] HOVER L D, ABEL T W, OWENS P. Genomic analysis of the BMP family in glioblastomas [J]. Translational Oncogenomics, 2015, 7: 1-9.
[24] GUO M, JIANG Z F, ZHANG X M, et al. miR-656 inhibits glioma tumorigenesis through repression of BMPR1A [J]. Carcinogenesis, 2014, 35(8): 1698-1706.
[25] LAOUKILI J, KOOISTRA M R, BRAS A, et al. Foxm1 is required for execution of the mitotic programme and chromosome stability [J]. Nature Cell Biology, 2005, 7(2): 126-136.
[26] HALASI M, GARTEL A L. Fox (m1) news—it is cancerfox (m1) news—it is cancer[J]. Molecular Cancer Therapeutics, 2013, 12(3): 245-254.
[27] DAI J, YANG L L, WANG J Y, et al. Prognostic value of foxm1 in patients with malignant solid tumor: a meta-analysis and system review [J]. Disease Markers, 2015: 352478:1-10.
[28] XU X S, MIAO R C, WAN Y, et al. Foxm1 as a novel therapeutic target for cancer drug therapy[J]. Asian Pacific Journal of Cancer Prevention, 2015, 16(1): 23-29.
[29] PENG W X, HAN X, ZHANG C L, et al. Foxm1-mediated rfc5 expression promotes temozolomide resistance[J]. Cell Biology and Toxicology, 2017, 33: 527-537.
[30] BORHANI S, GARTEL A L. Foxm1: a potential therapeutic target in human solid cancers[J]. Expert Opinion on Therapeutic Targets, 2020, 24(3): 205-217.
[31] LI Z, LI W L, CAO L, et al. Pknox2 suppresses gastric cancer through the transcriptional activation of igfbp5 and p53 [J]. Oncogene, 2019, 38(23): 4590-4604.
[32] ZHANG T, GUO J R, GU J, et al. Identifying the key genes and microRNAs in colorectal cancer liver metastasis by bioinformatics analysis and in vitro experiments[J]. Oncology Reports, 2019, 41(1): 279-291.
[33] DONG C Y, ZHANG J W, FANG S, et al. IGFBP5 increases cell invasion and inhibits cell proliferation by EMT and Akt signaling pathway in Glioblastoma multiforme cells[J]. Cell Division, 2020, 15(1): 1-9.
[34] WANG Y L, ZHAO W J, XIAO Z, et al. A risk signature with four autophagy‐related genes for predicting survival of glioblastoma multiforme[J]. Journal of Cellular and Molecular Medicine, 2020, 24(7): 3807-3821.
[35] XIAO K, TAN J, YUAN J, et al. Prognostic value and immune cell infiltration of hypoxic phenotype‐related gene signatures in glioblastoma microenvironment[J]. Journal of Cellular and Molecular Medicine, 2020, 24(22): 13235-13247.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2022-08-15
基金项目:国家自然科学基金(81172178)
作者简介:周宇能,硕士研究生。E-mail:296952863@qq.com
*通讯作者:陈孝平,博士,副教授。E-mail:xiao.ping.chen@foxmail.com
引文格式:周宇能,彭肖,周婧,等. 基于衰老相关基因的胶质瘤预后模型[J]. 武汉工程大学学报,2023,45(3):305-311.

更新日期/Last Update: 2023-07-03