|本期目录/Table of Contents|

[1]徐 泽,张 诣,陈小虎,等.苯并噻二唑连接并苯材料的合成及电子传输性能研究[J].武汉工程大学学报,2023,45(03):266-271.[doi:10.19843/j.cnki.CN42-1779/TQ. 202302008]
 XU Ze,ZHANG Yi,CHEN Xiaohu,et al.Synthesis and Electron Transport Properties ofBenzothiadiazole Linked Acene[J].Journal of Wuhan Institute of Technology,2023,45(03):266-271.[doi:10.19843/j.cnki.CN42-1779/TQ. 202302008]
点击复制

苯并噻二唑连接并苯材料的合成及电子传输性能研究(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
45
期数:
2023年03期
页码:
266-271
栏目:
化学与化学工程
出版日期:
2023-06-30

文章信息/Info

Title:
Synthesis and Electron Transport Properties of
Benzothiadiazole Linked Acene
文章编号:
1674 - 2869(2023)03 - 0266 - 06
作者:
徐 泽1张 诣2陈小虎2王其彪1黎俊波2余响林*1
1. 武汉工程大学化工与制药学院,绿色化工过程教育部重点实验室(武汉工程大学),
湖北 武汉 430205;
2. 武汉工程大学化学与环境工程学院,湖北 武汉 430205
Author(s):
XU Ze1 ZHANG Yi 2 CHEN Xiaohu2 WANG Qibiao1 LI Junbo2 YU Xianglin*1
1. School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology; Key Laboratory of Green Chemical Process(Wuhan Institute of Technology), Ministry of Education, Wuhan 430205, China;
2. School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
关键词:
苯并噻二唑并苯末端溴取代电子传输
Keywords:
benzothiadiazole acene terminal bromo-substitution electron transport
分类号:
O611.3
DOI:
10.19843/j.cnki.CN42-1779/TQ. 202302008
文献标志码:
A
摘要:
在并苯材料中引入苯并噻二唑单元能有效降低材料未占据轨道(LUMO)能级,增强并苯材料稳定性。利用末端溴取代活性位点作为拓展反应体系的合成位点,通过偶联反应构筑出一组苯并噻二唑及苯并双噻二唑单元连接的多并苯结构(U-1,U-2),通过1H NMR, 13C NMR, HR-MS对其分子结构进行了全面的表征,并对材料基本光电性能进行了测试,两种化合物紫外吸收和荧光光谱中显示出类似的紫外吸收和荧光发射特征,U-2的最大吸收波长较化合物U-1有轻微蓝移,同时荧光发射波长发生了6 nm的蓝移。U-2的LUMO能级为-3.80 eV,较U-1为-3.50 eV的LUMO能级更低。最后,初步探讨了基于苯并噻二唑连接并苯材料对于取代常规PCBM作为反向钙钛矿电池电子传输层的器件性能,为此类电子传输材料在钙钛矿电池中的应用打下基础。
Abstract:
The introduction of benzothiadiazole unit can effectively reduce the lowest unoccupied molecular orbital (LUMO) level and enhance the stability of acene materials. The bromo-substituted terminal active site was used as the synthesis site to extend the reaction system. Through coupling reaction, a group of acene structures connected with benzothiadiazole and benzobisthiadiazole units (U-1, U-2) were constructed. The molecular structure was characterized by proton nuclear magnetic resonance, carbon-13 nuclear magnetic resonance and high resolution mass spectrometry, and the basic photoelectric properties of the materials were tested. The ultraviolet and visible spectrum (UV-vis) absorption and fluorescence spectra of the two compounds showed similar UV-vis absorption and fluorescence emission characteristics. The maximum absorption wavelength of U-2 is slightly blue shifted compared with that of compound U-1, and the fluorescence emission wavelength is blue shifted by 6 nm. U-2 has a lower LUMO level of -3.80 eV than U-1 (-3.50 eV). Finally, the performance of benzothiadiazole-linked acene materials for replacing conventional [6,6]-Phenyl-C61 butyrie acid methyl ester as the electron transport layer of reverse perovskite batteries was preliminarily discussed, which lays a foundation for the application of such electron transport materials in perovskite batteries.

参考文献/References:

[1] HU C Y, CHEN W P, YAO H C, et al. Facile synthesis of ladder-type polyacenes with perylene-fused-pyrene structures[J]. Macromolecular Chemistry and Physics, 2018, 219:1800201:1-6.

[2] TABERNIG S W, DAIBER B, WANG T Y, et al. Enhancing silicon solar cells with singlet fission: the case for frster resonant energy transfer using a quantum dot intermediate[J]. Journal of Photonics for Energy, 2018, 8(2): 022008:1-13.
[3] LEE H Y, CHOU P, LEE C T. Investigation of various thick copper phthalocyanine buffer layers on pentacene- based organic thin-film transistors[J]. Journal of Electronic Materials, 2018,47: 4818-4822.
[4] LEE C T, LIN Y M. Performance improvement mechanisms of pentacene-based organic thin-film transistors using TPD buffer layer[J]. Organic Electronics, 2013, 14(8):1952-1957.
[5] 曾祥花, 李战峰, 任静琨, 等. 基于噻吩-苯非对称单元的DPP类聚合物给体材料的合成及光伏性能[J]. 材料导报, 2018, 32(9):1423-1426.
[6] YANG L Q, LI X F, YANG Q Q, et al. High‐performance red quantum‐dot light‐emitting diodes based on organic electron transporting layer[J]. Advanced Functional Materials, 2020: 2007686:1-8.
[7] CHEN P, WANG L P, TAN W Y, et al. Delayed fluorescence in a solution-processable pure red molecular organic emitter based on dithienylbenzo-thiadiazole: a joint optical, electroluminescence, and magnetoele-ctroluminescence study[J]. ACS Applied Materials & Interfaces, 2015, 7(4):2972-2978.
[8] WANG C Y, WANG J X, LI P Z, et al. Synthesis, characterization, and non‐volatile memory device application of an N‐substituted heteroacene[J]. Chemistry An Asian Journal, 2014, 9(3):779-783.
[9] NEWMAN C R, FRISBIE C D, FILHO DAD S, et al. Introduction to organic thin film transistors and design of n-channel organic semiconductors[J]. Chemistry of Materials, 2004, 16:4436-4451.
[10] 李雅琴, 吴进军, 刘茂松, 等. 溴代蒽并及酚嗪并噻二唑衍生物的合成及光电性能研究[J]. 武汉工程大学学报, 2022, 44(1):25-30.
[11] MA F H, LIU F H, HOU Y J, et al. Electrochromic materials based on novel polymers containing triphenylamine units and benzo [c] [1,2,5] thiadiazole units[J]. Synthetic Metals, 2020, 259: 116235:1-9.
[12] 董攀飞, 徐志高, 吴明, 等. N263-HSCN体系负载有机相的反萃取行为研究[J]. 武汉工程大学学报,2022, 44(1): 31-35.
[13] 于聪, 沈裕强, 万佳琪, 等. 氮/氧与氮/硫双原子混杂六并苯的合成及光电性能[J]. 武汉工程大学学报, 2019, 41(3):226-231.
[14] MIAO S B, APPLETON A L, BERGER N, et al. 6’13-Diethynyl-5,7,12,14-tetraazapentacene[J]. Chemistry, 2009, 15(20): 4990-4993.
[15] FAN M X, CHEN G S, XIANG Y, et al. Anthrathiadiazole derivatives: synthesis, physical properties and two-photon absorption[J]. Chemistry-A European Journal, 2021, 27(42): 10898-10902.
[16] SUN X X, ZHUANG X X, REN Y L. Synthesis of a novel acceptor unit for D-A type polymers: 4,8-dibromobenzo- [1,2-c;4,5-c′] bis [1,2,5] thiadiazole[J]. Advanced Materials Research, 2012, 482:1221-1224.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2023-02-21
基金项目:武汉工程大学第十三届研究生教育创新基金(CX2021039)
作者简介:徐 泽,硕士研究生。E-mail:xz4147@qq.com
*通讯作者:余响林,博士,教授。E-mail:yxlin2002@163.com
引文格式:徐泽,张诣,陈小虎,等. 苯并噻二唑连接并苯材料的合成及电子传输性能研究[J]. 武汉工程大学学报,2023,45(3):266-271.
更新日期/Last Update: 2023-07-03