|本期目录/Table of Contents|

[1]邓延平,白浚贤,姜志民,等.阶梯型异质结光催化研究进展[J].武汉工程大学学报,2023,45(02):126-138.[doi:10.19843/j.cnki.CN42-1779/TQ.202109021]
 DENG Yanping,BAI Junxian,JIANG Zhimin,et al.Progress in Photocatalysis of Step-Scheme Heterojunction[J].Journal of Wuhan Institute of Technology,2023,45(02):126-138.[doi:10.19843/j.cnki.CN42-1779/TQ.202109021]
点击复制

阶梯型异质结光催化研究进展(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
45
期数:
2023年02期
页码:
126-138
栏目:
综述
出版日期:
2023-04-30

文章信息/Info

Title:
Progress in Photocatalysis of Step-Scheme Heterojunction
文章编号:
1674 - 2869(2023)02 - 0126 - 13
作者:
邓延平1白浚贤2姜志民2李 鑫*2
1. 华南农业大学材料与能源学院,广东 广州 510642;
2. 华南农业大学生物质工程研究院,农业部能源植物资源与利用重点实验室,广东 广州 510642
Author(s):
DENG Yanping1BAI Junxian 2JIANG Zhimin2LI Xin*2
1. College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China;
2. Institute of Biomass Engineering, Key Laboratory of Energy Plants Resource and Utilization,Ministry of
Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
关键词:
阶梯型异质结光催化剂费米能级机理
Keywords:
step-scheme heterojunction photocatalyst Fermi energy level mechanism
分类号:
O643.31
DOI:
10.19843/j.cnki.CN42-1779/TQ.202109021
文献标志码:
A
摘要:
半导体光催化能源转换技术是解决未来环境和能源问题的有效的途径之一。为有效改进半导体光催化剂载流子分离性能、活性及稳定性,诸多异质结能带理论已经被研究。在深入剖析传统II型及Z型异质结不足的基础上,余家国于2019年提出一种新的阶梯(S)型异质结的概念。这种S型异质结主要由功函数较小、费米能级较高的还原型半导体光催化剂(RP)和功函数较大、费米能级较低的氧化型半导体光催化剂(OP)通过错开型方式构建而成,S型异质结在抑制不必要的电子空穴复合的同时保留了更强的光催化氧化及还原能力,这些优势使得S型异质结光催化理论和材料体系发展迅速,已成为近年来光催化领域一个新兴的研究热点。本文重点介绍S-型异质结光催化的概念起源和原理创新,详细阐述了各种证实S型异质结的表征方法,讨论了S型异质结光催化剂在光催化H2生产、CO2还原、污染物降解及H2O2生产等领域的最新进展,综述S型异质结催化剂的未来发展的挑战,为S型异质结光催化剂在分子和原子水平上精准操纵光生电荷分离提供新的设计思路和方法。

Abstract:
Semiconductor-based photocatalytic energy conversion has become a very effective approach to solve the problems of environment and energy. To effectively improve the carrier-separation performance,activity and stability of semiconductor photocatalysts,many heterojunction energy band theories have been developed. On the basis of in-depth analysis of the shortcomings of traditional type II and Z-scheme heterojunctions,the concept of a new step-scheme (S-scheme) heterojunction was proposed by Yu Jiaguo in 2019. This S-scheme heterojunction is mainly composed of reductive semiconductor photocatalyst with a smaller work function and a higher Fermi energy level,and oxidized semiconductor photocatalyst with a larger work function and a lower Fermi energy level,which is constructed in a staggered manner. Apparently,the S-scheme heterojunction can effectively inhibit the unnecessary electron hole recombination and maintain much stronger photocatalytic oxidation and reduction ability. These advantages have led to the rapid development of the theory and material systems of S-scheme heterojunction photocatalysts,which has become a new research hotspot in the field of photocatalysis in recent years. This work mainly focuses on the concept origin and principle innovation of S-scheme heterojunction photocatalysts,fully analyzes various characterization methods for confirming S-scheme heterojunction,discusses the latest progress of S-scheme heterojunction photocatalysts in different fields,such as photocatalytic H2 evolution,CO2 reduction,degradation of pollutants and H2O2 production,summarizes the challenges of the future development of S-scheme heterojunction photocatalysts,and provides new design ideas and methods for the precise manipulation of photogenerated charge separation in S-scheme heterojunction photocatalysts at the molecular and atomic levels.

参考文献/References:

[1] ZHANG K,GUO L J. Metal sulphide semiconductors for photocatalytic hydrogen production[J]. Catalysis Science & Technology,2013,3(7):1672-1690.

[2] KUDO A,MISEKI Y. Heterogeneous photocatalyst materials for water splitting[J]. Chemical Society Reviews,2009,38(1):253-278.
[3] SHEN R C,XIE J,XIANG Q J,et al. Ni-based photocatalytic H2-production cocatalysts[J]. Chinese Journal of Catalysis,2019,40(3):240-288.
[4] LIANG Z Z,SHEN R C,NG Y H,et al. A review on 2D MoS2 cocatalysts in photocatalytic H2 production[J]. Journal of Materials Science & Technology,2020,56:89-121.
[5] WANG J,SUN S J,ZHOU R,et al. A review:synthesis,modification and photocatalytic applications of ZnIn2S4[J]. Journal of Materials Science & Technology,2021,78:1-19.
[6] SHEN R C,ZHANG L P,CHEN X Z,et al. Integrating 2D/2D CdS/α-Fe2O3 ultrathin bilayer Z-scheme heterojunction with metallic β-NiS nanosheet-based ohmic-junction for efficient photocatalytic H2 evolution[J]. Applied Catalysis B:Environmental,2020,266:118619:1-9.
[7] GAO L F,BAO W L,KUKLIN A V,et al. Hetero-MXenes:theory,synthesis,and emerging applications[J]. Advanced Materials,2021,33(10):2004129:1-43.
[8] KHAN K,TAO X P,SHI M,et al. Visible-light-driven photocatalytic hydrogen production on Cd0.5Zn0.5S nanorods with an apparent quantum efficiency exceeding 80%[J]. Advanced Functional Materials,2020,30(42):2003731:1-8.
[9] RAHMAN M Z,KIBRIA M G,MULLINS C B. Metal-free photocatalysts for hydrogen evolution[J]. Chemical Society Reviews,2020,49(6):1887-1931.
[10] LOW J X,CAO S W,YU J G,et al. Two-dimensional layered composite photocatalysts[J]. Chemical Communications,2014,50(74):10768-10777.
[11] CHEN S,HUANG D L,XU P,et al. Semiconductor-based photocatalysts for photocatalytic and photoelectrochemical water splitting:will we stop with photocorrosion?[J]. Journal of Materials Chemistry A,2020,8(5):2286-2322.
[12] WAGEH S,AL-GHAMDI A A,JAFER R,et al. A new heterojunction in photocatalysis:S-scheme heterojunction[J]. Chinese Journal of Catalysis,2021,42(5):667-669.
[13] WANG J,LIU D,ZHU Y F,et al. Supramolecular packing dominant photocatalytic oxidation and anticancer performance of PDI[J]. Applied Catalysis B:Environmental,2018,231:251-261.
[14] HE F, MENG A Y, CHENG B, et al. Enhanced photocatalytic H2-production activity of WO3/TiO2 step-scheme heterojunction by graphene modification[J]. Chinese Journal of Catalysis,2020,41(1):9-20.
[15] LI X B,KANG B B,DONG F,et al. Enhanced photocatalytic degradation and H2/H2O2 production performance of S-pCN/WO2.72 S-scheme heterojunction with appropriate surface oxygen vacancies[J]. Nano Energy,2021,81:105671:1-11.
[16] WANG L B,CHENG B,ZHANG L Y,et al. In situ irradiated XPS investigation on S-scheme TiO2@ ZnIn2S4 photocatalyst for efficient photocatalytic CO2 reduction[J]. Small,2021,17(41):2103447:1-9.
[17] REN D D, SHEN R C, JIANG Z M,et al. Highly efficient visible-light photocatalytic H2 evolution over 2D-2D CdS/Cu7S4 layered heterojunctions[J]. Chinese Journal of Catalysis,2020,41(1):31-40.
[18] SHEN R C,LU X Y,ZHENG Q Q,et al. Tracking S-scheme charge transfer pathways in Mo2C/CdS H2-evolution photocatalysts[J]. Solar RRL,2021,5(7):2100177:1-7.
[19] XU H T, XIAO R, HUANG J R, et al. In situ construction of protonated g-C3N4/Ti3C2 MXene Schottky heterojunctions for efficient photocatalytic hydrogen production[J]. Chinese Journal of Catalysis,2021,42(1):107-114.
[20] SHEN R C,HE K L,ZHANG A P,et al. In-situ construction of metallic Ni3C@Ni core-shell cocatalysts over g-C3N4 nanosheets for shell-thickness- dependent photocatalytic H2 production[J]. Applied Catalysis B:Environmental,2021,291:120104:1-12.
[21] LI Z S,HUANG G H,LIU K,et al. Hierarchical BiOX (X=Cl,Br,I) microrods derived from bismuth-MOFs:in situ synthesis,photocatalytic activity and mechanism[J]. Journal of Cleaner Production,2020,272:122892:1-11.
[22] DU H,GUO H L,LIU Y N,et al. Metallic 1T-LixMoS2 cocatalyst significantly enhanced the photocatalytic H2 evolution over Cd0.5Zn0.5S nanocrystals under visible light irradiation[J]. ACS Applied Materials & Interfaces,2016,8(6):4023-4030.
[23] HUANG Z Y,XU Z H,MAHBOUB M,et al. PbS/CdS core-shell quantum dots suppress charge transfer and enhance triplet transfer[J]. Angewandte Chemie(International Edition),2017,56(52):16583-16587.
[24] YI F T,GAN H H,JIN H F,et al. Sulfur-and chlorine-co-doped g-C3N4 nanosheets with enhanced active species generation for boosting visible-light photodegradation activity[J]. Separation and Purification Technology,2020,233:115997:1-13.
[25] REN D D,LIANG Z Z,NG Y H,et al. Strongly coupled 2D-2D nanojunctions between P-doped Ni2S (Ni2SP) cocatalysts and CdS nanosheets for efficient photocatalytic H2 evolution[J]. Chemical Engineering Journal,2020,390:124496:1-9.
[26] LOW J X,YU J G,JARONIEC M,et al. Heterojunction photocatalysts[J]. Advanced Materials,2017,29(20):1601694:1-20.
[27] FRISENDA R,MOLINA-MENDOZA A J,MUELLER T,et al. Atomically thin p-n junctions based on two-dimensional materials[J]. Chemical Society Reviews,2018,47(9):3339-3358.
[28] ZHOU P, YU J G, JARONIEC M. All-solid-state Z-scheme photocatalytic systems[J]. Advanced Materials,2014,26(29):4920-4935.
[29] XU Q L,ZHANG L Y,CHENG B,et al. S-scheme heterojunction photocatalyst[J]. Chem,2020,6(7):1543-1559.
[30] FU J W,XU Q L,LOW J X,et al. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst[J]. Applied Catalysis B:Environmental,2019,243:556-565.
[31] HE F,ZHU B C,CHENG B,et al. 2D/2D/0D TiO2/C3N4/Ti3C2 MXene composite S-scheme photocatalyst with enhanced CO2 reduction activity[J]. Applied Catalysis B:Environmental,2020,272:119006:1-12.
[32] FEI X G,TAN H Y,CHENG B,et al. 2D/2D black phosphorus/g-C3N4 S-scheme heterojunction photocatalysts for CO2 reduction investigated using DFT calculations[J]. Acta Physico-Chimica Sinica,2021,37(6):2010027:1-9.
[33] ENESCA A,ANDRONIC L. Photocatalytic activity of S-scheme heterostructure for hydrogen production and organic pollutant removal:a mini-review[J]. Nanomaterials,2021,11(4):871:1-20.
[34] LI X B,XIONG J,GAO X M,et al. Novel BP/BiOBr S-scheme nano-heterojunction for enhanced visible-light photocatalytic tetracycline removal and oxygen evolution activity[J]. Journal of Hazardous Materials,2020,387:121690:1-11.
[35] BAI J X, SHEN R C,CHEN W L,et al. Enhanced photocatalytic H2 evolution based on a Ti3C2/Zn0.7Cd0.3S/ Fe2O3 ohmic/S-scheme hybrid heterojunction with cascade 2D coupling interfaces[J]. Chemical Engineering Journal,2022,429:132587:1-13.
[36] CHENG C,HE B W,FAN J J,et al. An inorganic/organic S-scheme heterojunction H2-production photocatalyst and its charge transfer mechanism[J]. Advanced Materials,2021,33(22):2100317:1-8.
[37] PADMANABHAN N T, THOMAS N, LOUIS J,et al. Graphene coupled TiO2 photocatalysts for environmental applications:a review[J]. Chemosphere,2021,271:129506:1-33.
[38] XU S H,WANG J F,GUO J P,et al. Activating Co nanoparticles on P-doped carbon nitride via enhancing Mott-Schottky effect by constructing interfacial chemical bonding for the efficient dehydrogenation of ammonia-borane[J]. Applied Surface Science,2020,533:146999:1-10.
[39] JIANG Z M,CHEN Q, ZHENG Q Q, et al. Constructing 1D/2D Schottky-based heterojunctions between Mn0.2Cd0.8S nanorods and Ti3C2 nanosheets for boosted photocatalytic H2 evolution[J]. Acta Physico-Chimica Sinica,2021,37(6):2010059:1-11.
[40] CHEN Y J,TIAN G H,REN Z Y,et al. Hierarchical core-shell carbon nanofiber@ZnIn2S4 composites for enhanced hydrogen evolution performance[J]. ACS Applied Materials & Interfaces,2014,6(16):13841-13849.
[41] GUO X L,PENG Y H,LIU G B,et al. An efficient ZnIn2S4@CuInS2 core-shell p-n heterojunction to boost visible-light photocatalytic hydrogen evolution[J]. The Journal of Physical ChemistryC,2020,124(11):5934-5943.
[42] MISHRA A,MEHTA A,BASU S,et al. Graphitic carbon nitride (g-C3N4)-based metal-free photocatalysts for water splitting:a review[J]. Carbon,2019,149:693-721.
[43] LIU Y M,GONG Z Y,Lü H, et al. Rational design of Au decorated Mn0.5Cd0.5S/WO3 step-scheme heterostructure with multichannel charge transfer and efficient H2 generation[J]. Applied Surface Science,2020,526:146734:1-10.
[44] REN D D,ZHANG W N,DING Y N,et al. In situ fabrication of robust cocatalyst-free CdS/g-C3N4 2D-2D step-scheme heterojunctions for highly active H2 evolution [J]. Solar RRL,2020,4(8):1900423:1-11.
[45] LIU J H,WEI X N,SUN W Q,et al. Fabrication of S-scheme CdS-g-C3N4-graphene aerogel heterojunction for enhanced visible light driven photocatalysis[J]. Environmental Research,2021,197:111136:1-10.
[46] TAO J N,YU X H,LIU Q Q,et al. Internal electric field induced S-scheme heterojunction MoS2/CoAl LDH for enhanced photocatalytic hydrogen evolution[J]. Journal of Colloid and Interface Science,2021,585:470-479.
[47] LUO J H,LIN Z X,ZHAO Y,et al. The embedded CuInS2 into hollow-concave carbon nitride for photocatalytic H2O splitting into H2 with S-scheme principle[J]. Chinese Journal of Catalysis,2020,41(1):122-130.
[48] CHEN Y L, SU F Y,XIE H Q, et al. One-step construction of S-scheme heterojunctions of N-doped MoS2 and S-doped g-C3N4 for enhanced photocatalytic hydrogen evolution[J]. Chemical Engineering Journal,2021,404:126498:1-9.
[49] XI Y M,CHEN W B,DONG W R,et al. Engineering an interfacial facet of S-scheme heterojunction for improved photocatalytic hydrogen evolution by modulating the internal electric field [J]. ACS Applied Materials & Interfaces,2021,13(33):39491-39500.
[50] LI C X,LIU X T,HUO P W,et al. Boosting H2 production over C60-mediated NH2-MIL-125(Ti)/Zn0.5Cd0.5S S-scheme heterojunction via enhanced interfacial carrier separation [J]. Small,2021,17(39):2102539:1-7.
[51] BIE C B, ZHU B C, XU F Y, et al. In situ grown monolayer N-doped graphene on CdS hollow spheres with seamless contact for photocatalytic CO2 reduction[J]. Advanced Materials, 2019, 31(42): 1902868:1-6.
[52] LI D D,KASSYMOVA M,CAI X C,et al. Photocatalytic CO2 reduction over metal-organic framework-based materials[J]. Coordination Chemistry Reviews,2020,412:213262:1-16.
[53] ZHU Z Z,LI X X,QU Y T,et al. A hierarchical heterostructure of CdS QDs confined on 3D ZnIn2S4 with boosted charge transfer for photocatalytic CO2 reduction[J]. Nano Research,2020,14(1):81-90.
[54] WU Z Y,LI C R,LI Z,et al. Niobium and titanium carbides (MXenes) as superior photothermal supports for CO2 photocatalysis [J]. ACS Nano,2021,15(3):5696-5705.
[55] ZHANG W H, MOHAMED A R,ONG W J. Z-scheme photocatalytic systems for carbon dioxide reduction:where are we now?[J]. Angewandte Chemie(International Edition),2020,59(51):22894-22915.
[56] XIE Q,HE W M,LIU S W,et al. Bifunctional S-scheme g-C3N4/Bi/BiVO4 hybrid photocatalysts toward artificial carbon cycling[J]. Chinese Journal of Catalysis,2020,41(1):140-153.
[57] XU F X, MENG K, CHENG B, et al. Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction[J]. Nature Communications,2020,11:4613:1-9.
[58] DENG H Z, FEI X G, YANG Y, et al. S-scheme heterojunction based on p-type ZnMn2O4 and n-type ZnO with improved photocatalytic CO2 reduction activity[J]. Chemical Engineering Journal,2021,409:127377:1-10.
[59] QIU Q Q, ZHU P, LIU Y, et al. Highly efficient In2S3/WO3 photocatalysts:Z-scheme photocatalytic mechanism for enhanced photocatalytic water pollutant degradation under visible light irradiation[J]. RSC Advances,2021,11(6):3333-3341.
[60] ENESCA A, ISAC L. Tuned S-scheme Cu2S_TiO2_WO3 heterostructure photocatalyst toward S-metolachlor (S-MCh) herbicide removal[J]. Materials,2021,14(9):2231:1-14.
[61] FAN H X,ZHOU H L,LI W J,et al. Facile fabrication of 2D/2D step-scheme In2S3/Bi2O2CO3 heterojunction towards enhanced photocatalytic activity[J]. Applied Surface Science,2020,504:144351:1-8.
[62] SHI Y H, HUANG J H, ZENG G M, et al. Photocatalytic membrane in water purification:is it stepping closer to be driven by visible light?[J]. Journal of Membrane Science,2019,584:364-392.
[63] YANG Y, ZHANG C, LAI C, et al. BiOX (X=Cl,Br,I) photocatalytic nanomaterials:applications for fuels and environmental management[J]. Advances in Colloid and Interface Science,2018,254:76-93.
[64] GHOREISHIAN S M,RANJITH K S,PARK B,et al. Full-spectrum-responsive Bi2S3@CdS S-scheme heterostructure with intimated ultrathin RGO toward photocatalytic Cr(VI) reduction and H2O2 production:experimental and DFT studies[J]. Chemical Engineering Journal, 2021, 419:129530:1-15.
[65] GOGOI D,MAKKAR P,GHOSH N N. Solar light-irradiated photocatalytic degradation of model dyes and industrial dyes by a magnetic CoFe2O4-gC3N4 S-scheme heterojunction photocatalyst[J]. ACS Omega,2021,6(7):4831-4841.
[66] VAN PHAM V,MAI D Q,BUI D P,et al. Emerging 2D/0D g-C3N4/SnO2 S-scheme photocatalyst:new generation architectural structure of heterojunctions toward visible-light-driven NO degradation[J]. Environmental Pollution,2021,286:117510:1-11.
[67] SHEN J T, QIAN L, HUANG J L, et al. Enhanced degradation toward Levofloxacin under visible light with S-scheme heterojunction In2O3/Ag2CO3:internal electric field,DFT calculation and degradation mechanism[J]. Separation and Purification Technology,2021,275:119239:1-14.
[68] WU S S,YU X,ZHANG J L,et al. Construction of BiOCl/CuBi2O4 S-scheme heterojunction with oxygen vacancy for enhanced photocatalytic diclofenac degradation and nitric oxide removal[J]. Chemical Engineering Journal,2021,411:128555:1-12.
[69] YANG Y,ZENG Z T,ZENG G M,et al. Ti3C2 MXene/porous g-C3N4 interfacial Schottky junction for boosting spatial charge separation in photocatalytic H2O2 production[J]. Applied Catalysis B:Environmental,2019,258:117956:1-11.
[70] SUK M,CHUNG M W,HAN M H,et al. Selective H2O2 production on surface-oxidized metal-nitrogen-carbon electrocatalysts[J]. Catalysis Today,2021,359:99-105.
[71] ZHANG H, JIA L H,WU P, et al. Improved H2O2 photogeneration by KOH-doped g-C3N4 under visible light irradiation due to synergistic effect of N defects and K modification[J]. Applied Surface Science,2020,527:146584:1-11.
[72] YANG Y, CHENG B,YU J G, et al. TiO2/In2S3 S-scheme photocatalyst with enhanced H2O2-production activity[J/OL]. Nano Research,2021,(2021-07-22)[2021-09-20]. https://doi.org/10.1007/s12274-021-3733-0.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2021-09-26
基金项目:国家自然科学基金(21975084,51672089)
*通讯作者:李 鑫,博士,教授。E-mail:Xinli@scau.edu.cn
引文格式:邓延平,白浚贤,姜志民,等. 阶梯型异质结光催化研究进展[J]. 武汉工程大学学报,2023,45(2):126-138.

更新日期/Last Update: 2023-05-04