|本期目录/Table of Contents|

[1]罗海彬,曹庆成,覃远航*.Co掺杂ZIF-8衍生合成高效Co-N-C氧还原催化剂的研究[J].武汉工程大学学报,2023,45(01):35-41.[doi:10.19843/j.cnki.CN42-1779/TQ.202204025]
 LUO Haibin,CAO Qincheng,QIN Yuanhang*.Cobalt-Doped ZIF-8-Derived High-Performance Co-N-COxygen Reduction Catalyst[J].Journal of Wuhan Institute of Technology,2023,45(01):35-41.[doi:10.19843/j.cnki.CN42-1779/TQ.202204025]
点击复制

Co掺杂ZIF-8衍生合成高效Co-N-C氧还原
催化剂的研究
(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
45
期数:
2023年01期
页码:
35-41
栏目:
化学与化学工程
出版日期:
2023-02-28

文章信息/Info

Title:
Cobalt-Doped ZIF-8-Derived High-Performance Co-N-C
Oxygen Reduction Catalyst
文章编号:
1674 - 2869(2023)01 - 0035 - 07
作者:
罗海彬曹庆成覃远航*
武汉工程大学化工与制药学院,绿色化工过程教育部重点实验室(武汉工程大学),
新型反应器与绿色化学工艺湖北省重点实验室(武汉工程大学),湖北 武汉 430205
Author(s):
LUO HaibinCAO Qincheng QIN Yuanhang*
School of Chemical Engineering and Pharmacy,Wuhan Institute of Technology;Key Laboratory of Green Chemical Engineering Process (Wuhan Institute of Technology),Ministry of Education;Hubei Key Laboratory of Novel Reactor and Green Chemical Technology(Wuhan Institute of Technology),Wuhan 430205,China

关键词:
氧还原反应非贵金属催化剂Co-N-C溶剂热法
Keywords:
oxygen reduction reaction non-precious metal catalyst Co-N-C solvothermal method
分类号:
TM911.4
DOI:
10.19843/j.cnki.CN42-1779/TQ.202204025
文献标志码:
A
摘要:
在合成中添加Co(NO3)2·6H2O制备钴掺杂的2-甲基咪唑锌盐材料,通过优化钴掺杂量及热解温度得到了具有高比表面积(888 m2/g)且同时存在微孔和介孔(孔体积为0.591 cm3/g)的高效Co-N-C催化剂。电化学测试表明:Co-N-C催化剂具有良好的酸性氧还原催化活性、稳定性和抗甲醇毒化性能,其在0.1 mol/L HClO4溶液中的氧还原途径主要是4电子反应过程,半波电位达到0.807 V,稳定性可与商业Pt/C催化剂相媲美。物理表征结果表明:钴元素成功地掺杂到Co-N-C催化剂中,较高的石墨化程度、良好的导电性、丰富的孔结构和Co-Nx活性位点,极大地提高了Co-N-C催化剂在酸性条件下的氧还原催化性能。本工作为合成ZIFs衍生的高效氧还原催化剂提供了新的思路。

Abstract:
Cobalt-doped 2-methylimidazole zinc salt material was prepared by adding (NO3)2·6H2O in the synthesis. The Co-N-C catalyst with high specific surface area (888 m2/g) and coexistence of micropore and mesoporous structure (pore volume 0.591 cm3/g) was synthesized by optimizing the amount of cobalt doped and the pyrolysis temperature. Electrochemical tests show that Co-N-C catalyst has good catalytic activity and stability for oxygen reduction and good resistance to methanol poisoning in acidic media. The oxygen reduction catalytic process of Co-N-C catalyst in 0.1 mol/L perchloric acid solution is mainly via a 4-electron pathway, and the half-wave potential reaches 0.807 V. It is found that the stability of the catalyst is almost the same as that of commercial Pt/C catalyst. The physical characterization results show that the metal cobalt element is successfully doped into the Co-N-C system, generating high degree of graphitization, good conductivity, and rich porous structure and Co-Nx active sites, which greatly improves the catalytic performance of Co-N-C under acidic conditions. This work provides a new idea for the synthesis of ZIFs-derived high-performance oxygen reduction catalysts.

参考文献/References:

[1] KONG J, QIN Y H, WANG T L, et al. Photodeposition of Pt nanoparticles onto TiO2@CNT as high-performance electrocatalyst for oxygen reduction reaction[J]. International Journal of Hydrogen Energy, 2020, 45(3): 1991-1997.

[2] JAOUEN F, PROIETTI E, LEFèVRE M, et al. Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells[J]. Energy & Environmental Science, 2011, 4(1): 114-130.
[3] BANHAM D, YE S Y, PEI K, et al. A review of the stability and durability of non-precious metal catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells[J]. Journal of Power Sources, 2015, 285: 334-348.
[4] ZHANG L, XIONG J, QIN Y H, et al. Porous N-C catalyst synthesized by pyrolyzing g-C3N4 embedded in carbon as highly efficient oxygen reduction electrocatalysts for primary Zn-air battery[J]. Carbon, 2019, 150: 475-484.
[5] SUN T T, ZHAO S, CHEN W S, et al. Single-atomic cobalt sites embedded in hierarchically ordered porous nitrogen-doped carbon as a superior bifunctional electrocatalyst[J]. Proceedings of the National Academy of Sciences, 2018, 115(50): 12692.
[6] CHEN G B, LIU P, LIAO Z Q, et al. Zinc-mediated template synthesis of Fe-N-C electrocatalysts with densely accessible Fe-Nx active sites for efficient oxygen reduction[J]. Advanced Materials, 2020, 32(8): 1907399.
[7] ZHAO W S, LI G D, TANG Z Y. Metal-organic frameworks as emerging platform for supporting isolated single-site catalysts[J]. Nano Today, 2019, 27: 178-197.
[8] CHEN MJ, HE Y H, SPENDELOW J S, et al. Atomically dispersed metal catalysts for oxygen reduction[J]. ACS Energy Letters, 2019, 4(7): 1619-1633.
[9] WANG H T, QIU X Y, PENG Z, et al. Cobalt-gluconate-derived high-density cobalt sulfides nanocrystals encapsulated within nitrogen and sulfur dual-doped micro/mesoporous carbon spheres for efficient electrocatalysis of oxygen reduction[J]. Journal of Colloid and Interface Science, 2020, 561: 829-837.
[10] TANG F, LIU L Y, WANG H X, et al. The combination of metal-organic frameworks and polydopamine nanotubes aiming for efficient one-dimensional oxygen reduction electrocatalyst[J]. Journal of Colloid and Interface Science, 2019, 552: 351-358.
[11] SHAH S S A, PENG L H, NAJAM T, et al. Monodispersed Co in mesoporous polyhedrons: fine-tuning of ZIF-8 structure with enhanced oxygen reduction activity[J]. Electrochimica Acta, 2017, 251: 498-504.
[12] YIN P Q, YAO T, WU Y, et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts[J]. Angewandte Chemie (International Edition), 2016,55(36):10800-10805.
[13] LU Z Y, WANG B, HU Y F, et al. Isolated Zn-Co atomic pair for highly active and durable oxygen reduction[J]. Angewandte Chemie, 2019, 131(9): 2648-2652.
[14] MENG Z H, CAI S C, WANG R, et al. Bimetallic-organic framework-derived hierarchically porous Co-Zn-N-C as efficient catalyst for acidic oxygen reduction reaction[J]. Applied Catalysis B: Environmental, 2019, 244: 120-127.
[15] JIAO L, WAN G, ZHANG R, et al. From metal-organic frameworks to single-atom Fe implanted N-doped porous carbons: efficient oxygen reduction in both alkaline and acidic media[J]. Angewandte Chemie (International Edition),2018,57(28):8525-8529.
[16] SA Y J, SEO DJ, WOO J, et al. A general approach to preferential formation of active Fe-Nx sites in Fe-N/C electrocatalysts for efficient oxygen reduction reaction[J]. Journal of the American Chemical Society, 2016, 138(45): 15046-15056.
[17] WANG X X, CULLEN D A, PAN Y T, et al. Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells[J]. Advanced Materials,2018,30(11):1706758.
[18] JIN H H, ZHOU H, HE D P, et al. MOF-derived 3D Fe-N-S co-doped carbon matrix/nanotube nanocomposites with advanced oxygen reduction activity and stability in both acidic and alkaline media[J]. Applied Catalysis B: Environmental, 2019, 250: 143-149.
[19] ZHANG Z P, SUN J T, WANG F, et al. Efficient oxygen reduction reaction (ORR) catalysts based on single iron atoms dispersed on a hierarchically structured porous carbon framework[J]. Angewandte Chemie (International Edition),2018,57(29): 9038-9043.
[20] QIAO Y Y, YUAN P F, HU Y F, et al. Sulfuration of an Fe-N-C catalyst containing FexC/Fe species to enhance the catalysis of oxygen reduction in acidic media and for use in flexible Zn-air batteries[J]. Advanced Materials, 2018, 30(46): 1804504:1-9.
[21] ZHANG H G, HWANG S, WANG M Y, et al. Single atomic iron catalysts for oxygen reduction in acidic media: particle size control and thermal activation[J]. Journal of the American Chemical Society, 2017, 139(40): 14143-14149.
[22] LI J, CHEN S G, YANG N, et al. Ultrahigh-loading zinc single-atom catalyst for highly efficient oxygen reduction in both acidic and alkaline media[J]. Angewandte Chemie (International Edition), 2019, 58(21): 7035-7039.
[23] CHEN C, ZHOU Z Y, WANG Y C, et al. Fe, N, S-doped porous carbon as oxygen reduction reaction catalyst in acidic medium with high activity and durability synthesized using CaCl2 as template[J]. Chinese Journal of Catalysis, 2017, 38(4): 673-682.
[24] CHENG Q Q, HAN S B, MAO K, et al. Co nanoparticle embedded in atomically-dispersed Co-N-C nanofibers for oxygen reduction with high activity and remarkable durability[J]. Nano Energy, 2018, 52: 485-493.
[25] WANG J, WANG Q Z, SHE W S, et al. Tuning the electron density distribution of the Co-N-C catalysts through guest molecules and heteroatom doping to boost oxygen reduction activity[J]. Journal of Power Sources, 2019, 418: 50-60.
[26] WANG X J, ZHANG H G, LIN H G, et al. Directly converting Fe-doped metal-organic frameworks into highly active and stable Fe-N-C catalysts for oxygen reduction in acid[J]. Nano Energy, 2016, 25: 110-119.
[27] LI F, DING XB, CAO QC, et al. A ZIF-derived hierarchically porous Fe-Zn-N-C catalyst synthesized via a two-stage pyrolysis for the highly efficient oxygen reduction reaction in both acidic and alkaline media[J]. Chemical Communications, 2019, 55(93): 13979-13982.
[28] CHAO S J, BAI Z Y, CUI Q, et al. Hollowed-out octahedral Co/N-codoped carbon as a highly efficient non-precious metal catalyst for oxygen reduction reaction[J]. Carbon, 2015, 82: 77-86.
[29] LIU D X, WANG B, LI H G, et al. Distinguished Zn,Co-Nx-C-Sy active sites confined in dentric carbon for highly efficient oxygen reduction reaction and flexible Zn-air batteries[J]. Nano Energy, 2019, 58: 277-283.

相似文献/References:

[1]毛惠东,李 芳,覃远航*.Fe-Co-N-C氧还原催化剂的制备及性能[J].武汉工程大学学报,2023,45(02):148.[doi:10.19843/j.cnki.CN42-1779/TQ.202204026]
 MAO Huidong,LI Fang,QIN Yuanhang*.Synthesis and Properties of Fe-Co-N-C Catalysts forOxygen Reduction Reaction[J].Journal of Wuhan Institute of Technology,2023,45(01):148.[doi:10.19843/j.cnki.CN42-1779/TQ.202204026]

备注/Memo

备注/Memo:
收稿日期:2022-05-12
基金项目:国家自然科学基金(21306144)
作者简介:罗海彬,硕士研究生。E-mail:1587341706@qq.com
*通讯作者:覃远航,博士,教授。E-mail:qyhsir@qq.com
引文格式:罗海彬,曹庆成,覃远航. Co掺杂ZIF-8衍生合成高效Co-N-C氧还原催化剂的研究[J]. 武汉工程大学学报,2023,45(1):35-41.

更新日期/Last Update: 2023-03-14