|本期目录/Table of Contents|

[1]沈 浩,黄 茜,冯锐捷,等.Zr掺杂介孔硅对亚甲基蓝的选择性吸附性能[J].武汉工程大学学报,2023,45(01):25-34.[doi:10.19843/j.cnki.CN42-1779/TQ.202204005]
 SHEN Hao,HUANG Qian,FENG Ruijie,et al.Selective Adsorption of Methylene Blue on Zr-Doped Mesoporous Silica[J].Journal of Wuhan Institute of Technology,2023,45(01):25-34.[doi:10.19843/j.cnki.CN42-1779/TQ.202204005]
点击复制

Zr掺杂介孔硅对亚甲基蓝的选择性吸附性能(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
45
期数:
2023年01期
页码:
25-34
栏目:
化学与化学工程
出版日期:
2023-02-28

文章信息/Info

Title:
Selective Adsorption of Methylene Blue on Zr-Doped Mesoporous Silica
文章编号:
1674 - 2869(2023)01 - 0025 - 10
作者:
沈 浩1黄 茜1冯锐捷1商 铭1吕仁亮*12徐彩丽3李 萍1陈苏芳1韩庆文*2
1. 武汉工程大学化工与制药学院,绿色化工过程教育部重点实验室(武汉工程大学),湖北 武汉 430205;
2. 湖北三峡实验室,湖北 宜昌 443007;
3. 武汉工程大学邮电与信息工程学院,湖北 武汉 430074
Author(s):
SHEN Hao1 HUANG Qian1FENG Ruijie1 SHANG Ming1Lü Renliang*12 XU Caili3 LI Ping1 CHEN Sufang1 HAN Qingwen*2

1. School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology;Key Laboratory of Green Chemical Process (Wuhan Institute of Technology),Ministry of Education, Wuhan 430205,China;
2. Hubei Three Gorges Laboratory, Yichang 443007,China;
3. The College of Post and Telecommunication of Wuhan Institute of Technology, Wuhan 430074,China

关键词:
锆掺杂介孔二氧化硅选择性吸附亚甲基蓝
Keywords:
zirconium doping mesoporous silica selective adsorption methylene blue
分类号:
X703
DOI:
10.19843/j.cnki.CN42-1779/TQ.202204005
文献标志码:
A
摘要:
以羟乙基纤维素为模板、偏硅酸钠为硅源合成了具有蠕虫状孔道的介孔二氧化硅。采用直接合成法和后嫁接法制备了不同Zr掺入量的吸附剂,分别命名为Zr-HECMS-D、Zr-HECMS-P(D:直接合成法;P:后嫁接法)。研究了各吸附剂对亚甲基蓝/甲基橙混合溶液中亚甲基蓝的选择性吸附性能。结果表明:吸附过程的最佳pH值均为10。酸性条件下,Zr与Si摩尔比为0.02的Zr-HECMS-D及Zr与Si摩尔比为0.01的Zr-HECMS-P的选择性吸附性能最好;亚甲基蓝去除率与材料表面Zr-O-S中的O占比呈正比。碱性条件下金属掺杂量对选择性影响不大。过程符合拟二级动力学模型,吸附平衡符合Langmuir吸附模型。

Abstract:
Mesoporous silica with worm-like channels was synthesized using hydroxyethyl cellulose as template and sodium metasilicate as silicon source. Adsorbents with different Zr content were prepared by direct synthesis method (named as Zr-HECMS-D)and post-grafting method (named as Zr-HECMS-P)respectively. Selective adsorption performance of each adsorbent for methylene blue in methylene blue/methyl orange mixed solution was evaluated. The results show that the optimum pH value of the adsorption process is 10.Under acidic conditions,Zr-HECMS-D with Zr/Si molar ratio of 0.02 and Zr-HECMS-P with Zr/Si molar ratio of 0.01 have the best selective adsorption performances, and the methylene blue removal efficiency is proportional to the proportion of O in Zr-O-Si on the surface of adsorbents as well. The metal doping amount has little effect on the selectivity under alkaline conditions. The adsorption process is conformed to the pseudo-second-order kinetic model, and the adsorption equilibrium is conformed to the Langmuir adsorption model.

参考文献/References:

[1] 马慧敏. 环糊精纳米复合材料对水体中染料的吸附研究[D]. 天津: 天津理工大学, 2021.

[2] RAMEZANI F, ZARE-DORABEI R. Simultaneous ultrasonic-assisted removal of malachite green and methylene blue from aqueous solution by Zr-SBA-15[J]. Polyhedron, 2019, 166: 153-161.
[3] 李柏林, 牛瑞霞, 程杰成. 亚甲基蓝-甲基橙混合指示剂测定三次采油用石油磺酸盐有效物含量[J]. 大庆石油地质与开发, 2004, 23(3): 75-76.
[4] 杜彩丽, 刘有智, 姜秀平. 三次采油用石油磺酸盐的分析方法及其进展[J]. 精细石油化工进展, 2010, 11(12): 46-50.
[5] ZHANG J, ZHAO X L, KONG Q M, et al. Preparation of chitosan/DADMAC/lignin terpolymer and its application of dye wastewater flocculation[J]. Polymer Bulletin, 2022, 79(9): 7479-7490.
[6] NI H C, ARSLAN M, WEI J, et al. Treatment of printing and dyeing wastewater in biological contact oxidation reactors comprising basalt fibers and combination fillers as bio-carriers: elucidation of bacterial communities and underlying mechanisms[J]. Science of the Total Environment, 2021, 785: 147272.
[7] SUN X X, XU J, LI X Y. Experimental study on treatment of dyeing wastewater by activated carbon adsorption, coagulation and fenton oxidation[J]. IOP Conference Series: Earth and Environmental Science, 2017, 100(1): 012199.
[8] GADEKAR M R, AHAMMED M M. Use of water treatment residuals for colour removal from real textile dye wastewater[J]. Applied Water Science, 2020, 10(7): 160.
[9] AFSHARI M, DINARI M. Synthesis of new imine-linked covalent organic framework as high efficient absorbent and monitoring the removal of direct fast scarlet 4BS textile dye based on mobile phone colorimetric platform[J]. Journal of Hazardous Materials, 2020, 385:121514.
[10] ALTINTIG E, ALTUNDAG H, TUZEN M, et al. Effective removal of methylene blue from aqueous solutions using magnetic loaded activated carbon as novel adsorbent[J]. Chemical Engineering Research and Design, 2017, 122: 151-163.
[11] TURP S M, TURP G A, EKINCI N, et al. Enhanced adsorption of methylene blue from textile wastewater by using natural and artificial zeolite[J]. Water Science and Technology, 2020, 82(3): 513-523.
[12] ABU-SAIED M A, TAHA N A. Purification of wastewater from cationic dye using SPGMA polymer: isotherm and kinetic study[J]. Global Nest Journal, 2020, 22(2): 179-184.
[13] TAN T C N, SEN T K. Aqueous-phase methylene blue (MB) dye removal by mixture of eucalyptus bark (EB) biomass and kaolin clay (KC) adsorbents: kinetics, thermodynamics, and isotherm modeling[J]. Separation Science and Technology, 2020, 55(6): 1036-1050.
[14] PELEKANI C, SNOEYINK V L. A kinetic and equilibrium study of competitive adsorption between atrazine and Congo red dye on activated carbon: the importance of pore size distribution[J]. Carbon, 2001, 39(1): 25-37.
[15] TAN K B, VAKILI M, HORRI B A, et al. Adsorption of dyes by nanomaterials: recent developments and adsorption mechanisms[J]. Separation and Purification Technology, 2015, 150: 229-242.
[16] MOKHTARI N,AFSHARI M,DINARI M. Synthesis and characterization of a novel fluorene-based covalent triazine framework as a chemical adsorbent for highly efficient dye removal[J]. Polymer, 2020, 195: 122430.
[17] MORSI R E, MOHAMED R S. Nanostructured mesoporous silica: influence of the preparation conditions on the physical-surface properties for efficient organic dye uptake[J]. Royal Society Open Science, 2018, 5(3): 172021.
[18] MALEKI M, BEITOLLAHI A, LEE J, et al. One pot synthesis of mesoporous boron nitride using polystyrene-b-poly(ethylene oxide) block copolymer[J]. RSC Advances, 2015, 5(9): 6528-6535.
[19] SONG X L, PANG Y M, GAO L G. Preparation of bimetal modified HMS molecular sieve and its desulfurization performance mechanism[J]. Applied Organometallic Chemistry, 2021, 35(11): e6393.
[20] LALCHHINGPUII, TIWARI D, LALHMUNSIAMA, et al. Chitosan templated synthesis of mesoporous silica and its application in the treatment of aqueous solutions contaminated with cadmium(II) and lead(II)[J]. Chemical Engineering Journal, 2017, 328: 434-444.
[21] NOOR P, KHANMOHAMMADI M, ROOZBEH-ANI B, et al. Introduction of table sugar as a soft second template in ZSM-5 nanocatalyst and its effect on product distribution and catalyst lifetime in methanol to gasoline conversion[J]. Journal of Energy Chemistry, 2018, 27(2): 582-590.
[22] LYU R L,ZHANG C,XIA T, et al. Efficient adsorption of methylene blue by mesoporous silica prepared using sol-gel method employing hydroxyethyl cellulose as a template[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2020, 606: 125425.
[23] 曹锡章, 王杏乔, 宋天佑. 无机化学(下册)[M].2版北京:高等教育出版社, 1994, 931-942.
[24] CHAUDHARI K, BAL R, DAS T K, et al. Electron spin resonance investigations on the location and reducibility of zirconium in mesoporous Zr-MCM-41 molecular sieves[J]. Journal of Physical Chemistry B, 2000, 104(47): 11066-11074.
[25] 赵静. 金属掺杂SBA-15的制备及其对MB染料吸附性能研究[D]. 陕西: 陕西科技大学, 2018.
[26] IBRAHIM A A, SALAMA R S, EL-HAKAM S A, et al. Synthesis of sulfated zirconium supported MCM-41 composite with high-rate adsorption of methylene blue and excellent heterogeneous catalyst[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2021, 616: 126361.
[27] QIU Y J, CHEN S F, WANG C W, et al. Preparation of SBA-15 with penetrating pores and their performance in Fischer-Tropsch synthesis[J]. New Journal of Chemistry, 2017, 41(23): 14109-14115.
[28] JIA J C, WANG H H, NIU H L, et al. Highly selective adsorption of organic dyes containing sulphonic groups using Cu2(OH)3NO3 nanosheets[J]. Journal of Nanoparticle Research, 2016, 18(9): 260.
[29] 任钢锋.活性炭的制备及其对亚甲基蓝的吸附性能研究[J].中国资源综合利用,2021,39(12):1-4.
[30] TOMBOC G M, JADHAV H S, KIM H. PVP assisted morphology-controlled synthesis of hierarchical mesoporous ZnCo2O4 nanoparticles for high-performance pseudocapacitor[J]. Chemical Engineering Journal, 2017, 308: 202-213.
[31] YUAN Y, CAI F, YANG L L. Pore structure characteristics and fractal structure evaluation of medium- and high-rank coal[J]. Energy Exploration & Exploitation, 2022, 40(1): 1-15.
[32] 陈苏芳. 有序中孔硅铝分子筛负载钴、钌费-托合成反应催化剂性能的研究[D]. 苏州: 苏州大学, 2013.
[33] 杨淑贤. 染料及重金属离子的竞争吸附与染料的光电氧化脱色[D]. 山东: 山东师范大学, 2013.
[34] 张国义, 程勇. 二氧化硅对亚甲基蓝吸附性能的影响[J]. 环保科技, 2010, 16(3): 23-25.
[35] TAO J, XIONG J Q, JIAO C L, et al. Hybrid mesoporous silica based on hyperbranch-substrate nanonetwork as highly efficient adsorbent for water treatment[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(1): 60-68.
[36] IGLESIAS J, MELERO J A, BAUTISTA L F, et al. Zr-SBA-15 as an efficient acid catalyst for FAME production from crude palm oil[J]. Catalysis Today, 2011, 167(1): 46-55.
[37] XUAN K, PU Y F, LI F, et al. Direct synthesis of dimethyl carbonate from CO2 and methanol over trifluoroacetic acid modulated UiO-66[J]. Journal of CO2 Utilization, 2018, 27: 272-282.
[38] SABBAGHI A, LAM F L Y J, HU X J. High Zr-loaded SBA-15 cobalt catalyst for efficient NOx reduction in lean-burn exhaust[J]. Applied Catalysis A: General, 2015, 508: 25-36.
[39] THUNYARATCHATANON C, LUENGNARUEMI-TCHAI A, CHAISUWAN T, et al. Synthesis and characterization of Zr incorporation into highly ordered mesostructured SBA-15 material and its performance for CO2 adsorption[J]. Microporous and Mesoporous Materials, 2017, 253: 18-28.
[40] MéRIDA-MORALES S, GARCíA-SANCHO C, OREGUI-BENGOECHEA M, et al. Influence of morphology of zirconium-doped mesoporous silicas on 5-hydroxymethylfurfural production from mono-, di- and polysaccharides[J]. Catalysis Today, 2021, 367: 297-309.
[41] ZHU Y, YI B J, YUAN Q X, et al. Removal of methylene blue from aqueous solution by cattle manure-derived low temperature biochar[J]. RSC Advances, 2018, 8(36): 19917-19929.
[42] WANG K F, PENG N, SUN J T, et al. Synthesis of silica-composited biochars from alkali-fused fly ash and agricultural wastes for enhanced adsorption of methylene blue[J]. Science of the Total Environment, 2020, 729: 139055.
[43] KAYAN G O, KAYAN A. Inorganic-organic hybrid materials of zirconium and aluminum and their usage in the removal of methylene blue[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31(8): 3613-3623.
[44] HUANG L J, HE M,CHEN B B,et al. Magnetic Zr-MOFs nanocom-posites for rapid removal of heavy metal ions and dyes from water[J]. Chemosphere, 2018, 199: 435-444.
[45] YANG J M, YING R J, HAN C X, et al. Adsorptive removal of organic dyes from aqueous solution by a Zr-based metal-organic framework: effects of Ce(Ⅲ) doping[J]. Dalton Transactions, 2018, 47(11):3913-3920.
[46] 惠远峰. 基于四配位硅基配体的MOFs合成,结构及其选择性吸附亚甲基蓝性能的研究[D]. 吉林: 吉林大学, 2017.
[47] ZHOU L, GAO C, XU W J. Magnetic dendritic materials for highly efficient adsorption of dyes and drugs[J]. ACS Applied Materials & Interfaces, 2010, 2(5): 1483-1491.
[48] ZENG S J, WANG R W, ZHANG Z T, et al. Facile one pot synthesis of mesoporous organic-inorganic hybrid aluminosilicate spheres with ultra-high aluminium contents and their enhanced adsorption behavior for methylene blue[J]. RSC Advances, 2016, 6(55): 49551-49555.

相似文献/References:

[1]胡建,夏成波,彭静,等.磺酸化介孔二氧化硅的合成及催化苯甲醛和乙二醇的加成反应[J].武汉工程大学学报,2011,(05):34.[doi:10.3969/j.issn.16742869.2011.05.010]
 HU Jian,XIA Chengbo,PENG Jing,et al.Preparation of sulfofunctionlized mesoporous silica and its catalyticperformance in addition of benzaldehyde and ethylene glycol[J].Journal of Wuhan Institute of Technology,2011,(01):34.[doi:10.3969/j.issn.16742869.2011.05.010]

备注/Memo

备注/Memo:
收稿日期:2022-04-04
基金项目:湖北三峡实验室创新基金(SC214001)
作者简介:沈 浩,硕士研究生。E-mail:409963587@qq.com
*通讯作者:吕仁亮,博士,教授。E-mail:lyurenliang@126.com
韩庆文,工程师。E-mail:qingwenhan@qq.com
引文格式:沈浩,黄茜,冯锐捷,等. Zr掺杂介孔硅对亚甲基蓝的选择性吸附性能[J]. 武汉工程大学学报,2023,45(1):25-34.
更新日期/Last Update: 2023-03-14