|本期目录/Table of Contents|

[1]纪 钢,沈喜洲*,沈 陟,等.改性生物炭在含重金属废水处理中的应用[J].武汉工程大学学报,2023,45(01):1-8.[doi:10.19843/j.cnki.CN42-1779/TQ.202111001]
 JI Gang,SHEN Xizhou*,SHEN Zhi,et al.Utilization of Modified Biochar on Removal ofHeavy Metals from Waste Water [J].Journal of Wuhan Institute of Technology,2023,45(01):1-8.[doi:10.19843/j.cnki.CN42-1779/TQ.202111001]
点击复制

改性生物炭在含重金属废水处理中的应用(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
45
期数:
2023年01期
页码:
1-8
栏目:
综述
出版日期:
2023-02-28

文章信息/Info

Title:
Utilization of Modified Biochar on Removal of
Heavy Metals from Waste Water
文章编号:
1674 - 2869(2023)01 - 0001 - 08
作者:
纪 钢沈喜洲*沈 陟陶 土
武汉工程大学化工与制药学院,湖北 武汉 430205
Author(s):
JI Gang SHEN Xizhou* SHEN Zhi TAO Tu
School of Chemical Engineering and Pharmacy,Wuhan Institute of Technology,Wuhan 430205,China
关键词:
重金属生物炭吸附热解表面官能团
Keywords:
heavy metals biochar adsorbent pyrolysis surface functional group
分类号:
X703
DOI:
10.19843/j.cnki.CN42-1779/TQ.202111001
文献标志码:
A
摘要:
改性生物炭除金属离子效率高、成本低,对污水处理具有重要意义。本文综合评述了生物炭改性方法、吸附机理、改性生物炭对重金属吸附性能影响等方面的研究进展。介绍了生物炭的不同热解温度、矿物组分和表面官能团等理化性质对吸附重金属的影响;讨论通过物理和化学改性方法改进的生物炭的物理、化学性质对重金属吸附效果的影响,探讨不同理化性质的生物炭对重金属吸附的机理。根据不同生物炭材料之间的差异,采用具有针对性的改性方法,或在生物炭中加入适当的矿物质,设计出特定用途的生物炭可能是未来研究的重要方向。

Abstract:
Modified biochar has merits of high efficiency for removal of metal, which is of great significance for wastewater treatment. The research progress on modification methods, adsorption mechanism and influence of modified biochar on heavy metal adsorption performance was summarized. The effects of pyrolysis temperature, mineral composition, surface functional groups and other physicochemical properties of biochar on heavy metal adsorption were reviewed. The effects of physical and chemical properties of biochar modified by physical and chemical modification on heavy metal adsorption were discussed, and the mechanism of heavy metal adsorbtion by biochar with different physical and chemical properties was discussed. According to the differences between various biochar materials, it is a significant direction of designing specific biochar in the future research using targeted modification methods, or adding appropriate minerals into biochar.

参考文献/References:

[1] 吕永泽. 工业废水处理技术及再生利用探究[J]. 科技风, 2019(14):129.

[2] 刘勇. 重金属废水处理技术现状与发展趋势的研究[J]. 皮革制作与环保科技, 2020,1(16):66-71.
[3] GUPTA S, SIREESHA S, SREEDHAR I, et al. Latest trends in heavy metal removal from wastewater by biochar based sorbents[J]. Journal of Water Process Engineering, 2020, 38:101561:1-26.
[4] TAN X F, LIU Y G, ZENG G M, et al. Application of biochar for the removal of pollutants from aqueous solutions[J]. Chemosphere, 2015,125(4):70-85.
[5] ZUO W Q, CHEN C, CUI H J, et al. Enhanced removal of Cd(II) from aqueous solution using CaCO3 nanoparticle modified sewage sludge biochar[J]. RSC Advances, 2017, 7(26):16238-16243.
[6] LIU S, ZHANG S Z, FAN M H, et al. High-efficiency adsorption of various heavy metals by tea residue biochar loaded with nanoscale zero-valent iron[J]. Environmental Progress & Sustainable Energy, 2021, 40(6):e13706:1-12.
[7] ZHANG H P, XU F F, XUE J Y, et al. Enhanced removal of heavy metal ions from aqueous solution using manganese dioxide-loaded biochar: behavior and mechanism[J]. Scientific Reports, 2020, 10(1):1-13.
[8] NEELI S T, RAMSURN H, NG C Y, et al. Removal of Cr (VI), As (V), Cu (II), and Pb (II) using cellulose biochar supported iron nanoparticles: a kinetic and mechanistic study[J]. Journal of Environmental Chemical Engineering, 2020,8(5):103886:1-11.
[9] LI Y, GAO L M, WANG Y, et al. Development of an acidized biochar-supported hydrated Fe(III) oxides for highly efficient cadmium and copper sequestration from water[J]. Science of the Total Environment, 2021,784:147017:1-11.
[10] OLIVEIRA F R, PATEL A K, JAISI D P, et al. Environmental application of biochar: current status and perspectives[J]. Bioresource Technology, 2017, 246:110-122.
[11] WANG F, JIN L T, GUO C N, et al. Enhanced heavy metals sorption by modified biochars derived from pig manure[J]. Science of the Total Environment, 2021,786:147595:1-8.
[12] POO K M, SON E B, CHANG J S, et al. Biochars derived from wasted marine macro-algae (saccharina japonica and sargassum fusiforme) and their potential for heavy metalremoval in aqueous solution[J]. Journal of Environmental Management, 2018, 206:364-372.
[13] 王菁姣. 生物炭对重金属的吸附作用及腐殖酸的影响[D]. 北京:中国地质大学, 2015.
[14] KIM W K,SHIM T,KIM Y S, et al. Characterization of cadmium removal from aqueous solution by biochar produced from a giant Miscanthus at different pyrolytic temperatures[J]. Bioresour Technol, 2013, 138:266-270.
[15] DENG Y Y, HUANG S, LAIRD D A, et al. Adsorption behaviour and mechanisms of cadmium and nickel on rice straw biochars in single- and binary-metal systems[J]. Chemosphere, 2019, 218(3):308-318.
[16] CARRIER M, HARDIE A G, URAS U, et al. Production of char from vacuum pyrolysis of South-African sugar cane bagasse and its characterization as activated carbon and biochar[J]. Journal of Analytical & Applied Pyrolysis, 2012, 96(7):24-32.
[17] LI B, HUANG Y Y, WANG Z X, et al. Enhanced adsorption capacity of tetracycline on tea waste biochar with KHCO3 activation from aqueous solution[J]. Environmental Science and Pollution Research, 2021,28:44140-44151.
[18] AHMAD Z, GAO B, MOSA A, et al. Removal of Cu(II), Cd(II) and Pb(II) ions from aqueous solutions by biochars derived from potassium-rich biomass[J]. Journal of Cleaner Production, 2018, 180(4):437-449.
[19] ANASTOPOULOS I, ROBALDS A, HAI N T, et al. Removal of heavy metals by leaves-derived biosorbents[J]. Environmental Chemistry Letters, 2018, 17(2):755-766.
[20] LIU Q M, LI Y Y, CHEN H F, et al. Superior adsorption capacity of functionalised straw adsorbent for dyes and heavy-metal ions[J]. Journal of Hazardous Materials, 2019, 382:121040:1-13.
[21] YU D Y, WANG L L, WU M H. Simultaneous removal of dye and heavy metal by banana peels derived hierarchically porous carbons[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018,93:543-553.
[22] WANG Y T,CHEN H,WANG D J, et al. Preparation of corn stalk-based adsorbents and their specific application in metal ions adsorption[J]. Chemicke Zvesti, 2016, 70(9):1171-1184.
[23] LI A Y, DENG H, JIANG Y H, et al. Superefficient removal of heavy metals from wastewater by Mg-loaded biochars: a dsorption characteristics and removal mechanisms[J].Langmuir,2020,36(31):9160-9174.
[24] PAL D, MAITI S K. An approach to counter sediment toxicity by immobilization of heavy metals using waste fish scale derived biosorbent[J]. Ecotoxicology and Environmental Safety, 2019, 187:109833.:1-8.
[25] FEI H, GAO L Y, DENG J H, et al. Quantitative contribution of Cd2+ adsorption mechanisms by chicken-manure-derived biochars[J]. Environmental Science and Pollution Research, 2018, 25:1-13.
[26] XU X Y, ZHAO Y H, SIMA J, et al. Indispensable role of biochar-inherent mineral constituents in its environmental applications: a review[J]. Bioresour Technol, 2017,241:887-899.
[27] AMINI S, GHADIRI H, CHEN C R, et al. Salt-affected soils, reclamation, carbon dynamics, and biochar: a review[J]. Journal of Soils & Sediments, 2016, 16(3):939-953.
[28] INYANG M I, GAO B, YAO Y, et al. A review of biochar as a low-cost adsorbent for aqueous heavy metal removal[J]. Critical Reviews in Environmental Science and Technology, 2016, 46(4):406-433.
[29] ZHANG J N, FAN L, ZHANG H, et al. Multiscale visualization of the structural and characteristic changes of sewage sludge biochar oriented towards potential agronomic and environmental implication[J]. Scientific Reports, 2015, 5(1):1-8.
[30] 于长江. 生物炭复合材料的制备及其对重金属离子的吸附行为和机制研究[D]. 昆明:昆明理工大学,2018.
[31] MENG J, FENG X L, DAI Z M, et al. Adsorption characteristics of Cu(II) from aqueous solution onto biochar derived from swine manure[J]. Environmental Science and Pollution Research, 2014, 21(11):7035-7046.
[32] WANG R Z, HUANG D L, LIU Y G, et al. Investigating the adsorption behavior and the relative distribution of Cd2+ sorption mechanisms on biochars by different feedstock[J]. Bioresource Technology:Biomass,Bioenergy, Biowastes, Conversion Techno-logies,Biotransformations, Production Technologies,2018, 261:265-271.
[33] LEE M E, PARK J H, CHUNG J W. Comparison of the lead and copper adsorption capacities of plant source materials and their biochars[J]. Journal of Environmental Management,2019,236(4):118-124.
[34] HUANG F, GAO L Y, WU R R, et al. Qualitative and quantitative characterization of adsorption mechanisms for Cd2+ by silicon-rich biochar[J]. Science of the Total Environment,2020,731:139163:1-12.
[35] HUANG X X, LIU Y G, LIU S B, et al. Effective removal of Cr(VI) using β-cyclodextrin-chitosan modified biochars with adsorption/reduction bifuctional roles[J]. RSC Advances, 2016, 6(1):94-104.
[36] ZOU Y D,WANG X X,KHAN A,et al. Environmental remediation and application of nanoscale Zero-Valent iron and its composites for the removal of heavy metal ions: a review[J]. Environmental Science & Technology, 2016, 50(14):7290-7304.
[37] 王燕. 不同来源生物炭的特性及去除溶液中重金属离子的机理研究[D]. 上海:上海交通大学,2018.
[38] WANG H Y, GAO B, WANG S S, et al. Removal of Pb(II), Cu(II), and Cd(II) from aqueous solutions by biochar derived from KMnO4 treated hickory wood[J]. Bioresource Technol, 2015,197:356-362.
[39] YANG X D, WAN Y S, ZHENG Y L, et al. Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: a critical review[J]. Chemical Engineering Journal, 2019,366:608-621.
[40] BUDAEVA A D, ZOLTOEV E V. Porous structure and sorption properties of nitrogen-containing activated carbon[J]. Fuel, 2010, 89(9):2623-2627.
[41] GUO Z Z, ZHANG J, LIU H, et al. Development of a nitrogen-functionalized carbon adsorbent derived from biomass waste by diammonium hydrogen phosphate activation for Cr(VI) removal[J]. Powder Technology, 2017, 318: 459-464.
[42] JI L W, RAO M M, ALONI S, et al. Porous carbon nanofiber-sulfur composite electrodes for lithium/sulfur cells[J]. Energy & Environmental Science, 2011, 4(12):5053-5059.
[43] FENG W G,BORGUET E,VIDIC R D. Sulfurization of a carbon surface for vapor phase mercury removal - II: sulfur forms and mercury uptake[J]. Carbon, 2006, 44(14):2998-3004.
[44] PARK J H, WANG J J, ZHOU B Y, et al. Removing mercury from aqueous solution using sulfurized biochar and associated mechanisms[J]. Environmental Pollution, 2019, 244(1):627-635.
[45] CHEN D, WANG X B, WANG X L, et al. The mechanism of cadmium sorption by sulphur-modified wheat straw biochar and its application cadmium-contaminated soil[J]. The Science of the Total Environment, 2020, 714(4):136550:1-8.
[46] LEE S Y, CHOI H J.Persimmon leaf bio-waste for adsorptive removal of heavy metals from aqueous solution[J]. Journal of Environmental Management, 2018, 209:382-392.
[47] MA J C, HUANG W, LI X C, et al. The utilization of lobster shell to prepare low-cost biochar for high-efficient removal of copper and cadmium from aqueous: sorption properties and mechanisms[J]. Journal of Environmental Chemical Engineering, 2020, 9(1):104703:1-10.
[48] HARVEY O R, HERBERT B E, RHUE R D, et al. Metal interactions at the biochar-water interface: energetics and structure-sorption relationships elucidated by flow adsorption microcalorimetry[J]. Environmental Science & Technology,2011, 45(13):5550-5556.
[49] CHEN T, ZHOU Z Y, XU S, et al. Adsorption behavior comparison of trivalent and hexavalent chromium on biochar derived from municipal sludge[J]. Bioresource Technology, 2015, 190:388-394.
[50] SUN J K, LIAN F, LIU Z Q, et al. Biochars derived from various crop straws: characterization and Cd(Ⅱ) removal potential[J]. Ecotoxicology and Environmental Safety, 2014, 106:226-231.
[51] TONG X J, LI J Y, YUAN J H, et al. Adsorption of Cu(II) by biochars generated from three crop straws[J]. Chemical Engineering Journal, 2011, 172(2/3):828-834.
[52] UCHIMIYA M, BANNON D I, WARTELLE L H, et al. Lead retention by broiler litter biochars in small arms range soil: impact of pyrolysis temperature[J]. Journal of Agricultural & Food Chemistry, 2012, 60(20):5035-5044.
[53] MUKHERJEE A, ZIMMERMAN A R, HARRIS W. Surface chemistry variations among a series of laboratory-produced biochars[J]. Geoderma, 2012, 163(3/4):247-255.
[54] QIU Y P, CHENG H Y, XU C, et al. Surface characteristics of crop-residue-derived black carbon and lead(II) adsorption[J]. Water Research, 2008, 42(3):567-574.
[55] HSU N H, WANG S L, LIN Y C, et al. Reduction of Cr(VI) by crop-residue-derived black carbon.[J]. Environmental Science & Technology, 2009, 43(23):8801-8806.
[56] HAN L, QIAN L B, LIU R Q, et al. Lead adsorption by biochar under the elevated competition of cadmium and aluminum[J]. Scientific Reports, 2017, 7(1):1-11.
[57] XU X Y, CAO X D, ZHAO L, et al. Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar[J]. Environmental Science & Pollution Research International,2013,20(1):358-368.
[58] LAURA B, DUMITRU B. Functionalized soy waste biomass-A novel environmental-friendly biosorbent for the removal of heavy metals from aqueous solution[J]. Journal of Cleaner Production,2018,197:875-885.
[59] LU H L, ZHANG W H, YANG Y X, et al. Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar.[J]. Water Research,2012,46(3):854-862.

相似文献/References:

[1]汤亚飞,刘作焕,周旋.生物炭对亚甲基蓝的吸附动力学[J].武汉工程大学学报,2014,(09):23.[doi:103969/jissn16742869201409005]
 TANG Ya fei,LIU Zuo huan,ZHOU Xuan.Kinetics of biological activated carbon on blue methylene adsorption[J].Journal of Wuhan Institute of Technology,2014,(01):23.[doi:103969/jissn16742869201409005]

备注/Memo

备注/Memo:
收稿日期:2021-11-01
作者简介:纪 钢,硕士研究生。E-mail:1423431632@qq.com
*通讯作者:沈喜洲,硕士,教授。E-mail:XZhoush@163.com
引文格式:纪钢,沈喜洲,沈陟,等. 改性生物炭在含重金属废水处理中的应用[J]. 武汉工程大学学报,2023,45(1):1-8,75.
更新日期/Last Update: 2023-03-14