|本期目录/Table of Contents|

[1]付 臻,刘 慧*.基于柱芳烃超分子聚合物拓扑结构的研究进展[J].武汉工程大学学报,2022,44(06):591-598.[doi:10.19843/j.cnki.CN42-1779/202110009]
 FU Zhen,LIU Hui*.Progress in Topological Structures of Pillararene-Based Supramolecular Polymers[J].Journal of Wuhan Institute of Technology,2022,44(06):591-598.[doi:10.19843/j.cnki.CN42-1779/202110009]
点击复制

基于柱芳烃超分子聚合物拓扑结构的研究进展(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
44
期数:
2022年06期
页码:
591-598
栏目:
综述
出版日期:
2022-12-31

文章信息/Info

Title:
Progress in Topological Structures of Pillararene-Based Supramolecular Polymers
文章编号:
1674 - 2869(2022)06 - 0591 - 08
作者:
付 臻刘 慧*
武汉工程大学化工与制药学院,湖北 武汉 430205
Author(s):
FU ZhenLIU Hui*
School of Chemical Engineering and Pharmacy,Wuhan Institute of Technology,Wuhan 430205,China
关键词:
超分子聚合物柱芳烃拓扑结构主客体作用自组装
Keywords:
supramolecular polymers pillararenes topological structures host-guest interactions self-assembly
分类号:
O641.3
DOI:
10.19843/j.cnki.CN42-1779/202110009
文献标志码:
A
摘要:
超分子聚合物是分子单体通过非共价键自组装形成的聚合物,鉴于其自修复性、自适应性、可降解性,超分子聚合物在智能材料和分子器件等领域的应用潜力巨大。柱芳烃的富电子空腔和易修饰刚性结构,使其成为构筑超分子聚合物的理想砌块。首先,从线性聚合物、超支化聚合物到超交联聚合物分类描述了基于柱芳烃的超分子聚合物的拓扑结构及其特性。其次,按照非共价作用的类型介绍了基于柱芳烃的超分子聚合物的构筑方法,包括氢键、金属配位键、π-π堆积、卤键和主客体作用。最后,根据外部刺激响应方式,如pH、温度、溶剂、光等,总结了基于柱芳烃的超分子聚合物的应用前景。从拓扑结构的角度,提供了一种策略来调控超分子聚合物的性质,从而实现外部响应的智能材料、缓释药物的构筑。
Abstract:
Supramolecular polymers are polymeric arrays of monomeric units self-assembled by non-covalent interactions. The supramolecular polymers have potential applications in the field of smart materials and molecular devices due to their self-reparability, self-adaptability, and degradability. Pillararenes serve as an ideal building block to construct the supramolecular polymers as a result of their highly symmetric and electron-rich cavity. Firstly, we described the topological structures and features of pillararene-based supramolecular polymers, containing linear, hyperbranched, and cross-linked polymers. Secondly, we introduced the synthetic strategies to prepare the pillararene-based supramolecular polymers, according to non-covalent interactions, including hydrogen bonds, metal coordination bonds, π-π stacking, halogen interactions, and host-guest interactions. Finally, we outlined the perspectives on the applications of pillararene-based supramolecular polymers based on external stimulus factors, such as pH, temperature, solvent and light. From the perspective of topological structures, we provided a strategy to realize the construction of stimulus-responsive smart materials and extended-release drugs by controlling the properties of supramolecular polymers.

参考文献/References:

[1] FOUQUEY C, LEHN J M, LEVELUT A M. Molecular recognition directed self-assembly of supramolecular liquid crystalline polymers from complementary chiral components [J]. Advance Materials, 1990, 2 (5): 254-257.

[2] BRUNSVELD L, FOLMER B J B, MEIJER E W, et al. Supramolecular polymers [J]. Chemical Reviews, 2001, 101 (12): 4071-4097.
[3] YANG S K, AMBADE A V, WECK M. Main-chain supramolecular block copolymers [J]. Chemical Society Reviews, 2011, 40 (1): 129-137.
[4] ZHAO M, LI C J, SHAN X T, et al. A stretchable pillararene-containing supramolecular polymeric material with self-healing property [J]. Molecules, 2021, 26 (8): 2191:1-11.
[5] ZHOU Y J, JIE K C, ZHAO R, et al. Highly selective removal of trace isomers by nonporous adaptive pillararene crystals for chlorobutane purification [J]. Journal of the American Chemical Society, 2020, 142 (15): 6957-6961.
[6] JIE K C, ZHOU Y J, LI E R, et al. Nonporous adaptive crystals of pillararenes [J]. Accounts of Chemical Research, 2018, 51 (9): 2064-2072.
[7] TOM F A, GREEF D, MEIJER E W. Supramolecular polymers[J]. Nature, 2008, 453: 171-173.
[8] STUART M A C, HUCK W T S, GENZER J, et al. Emerging applications of stimuli-responsive polymer materials [J]. Nature Materials,2010, 9(2):101-113.
[9] OGOSHI T, KANAI S, FUJINAMI S, et al. Para-bridged symmetrical pillar[5]arenes their lewis acid catalyzed synthesis and host-guest property [J]. Journal of the American Chemical Society, 2007, 130 (15): 5022-5023.
[10] TELLINI V H S, JOVER A, GARC?′A J C, et al. Thermodynamics of formation of host-guest supramolecular polymers [J]. Journal of the American Chemical Society, 2006, 128 (17): 5728-5734.
[11] CHEN G S, JIANG M. Cyclodextrin-based inclusion complexation bridging supramolecular chemistry and macromolecular self-assembly [J]. Chemical Society Reviews, 2011, 40 (5): 2254-2266.
[12] YAN X Z, WANG F, ZHENG B, et al. Stimuli-responsive supramolecular polymeric materials [J]. Chemical Society Reviews, 2012, 41 (18): 6042-6065.
[13] DANJOU P E, GAEL D L, CORNUT D, et al. Supramolecular assistance for the selective demethylation of calixarene-based receptors [J]. the Journal of Organic Chemistry, 2015, 80 (10): 5084-5091.
[14] ZAYED J M, NOUVEL N, RAUWALD U, et al. Chemical complexity-supramolecular self-assembly of synthetic and biological building blocks in water [J]. Chemical Society Reviews, 2010, 39 (8): 2806-2816.
[15] OGOSHI T, YAMAGISHI T A, NAKAMOTO Y. Pillar-shaped macrocyclic hosts pillar[n]arenes: new key players for supramolecular chemistry [J]. Chemical Reviews, 2016, 116 (14): 7937-8002.
[16] TIAN W, LI X X, WANG J X. Supramolecular hyperbranched polymers [J]. Chemical Communica-tions, 2017, 53 (17): 2531-2542.
[17] LI H, FAN X D, MIN X, et al. Controlled supramolecular architecture transformation from homopolymer to copolymer through competitive self-sorting method [J]. Macromolecular Rapid Communications, 2017, 38 (5): 1600631.
[18] CHEN Y Y, JIANG X M, GONG G F, et al. Pillararene-based aiegens: research progress and appealing applications [J]. Chemical Communi-cations, 2021, 57 (3): 284-301.
[19] OGOSHI T, HASHIZUME M, YAMAGISHI T A, et al. Synthesis, conformational and host-guest properties of water-soluble pillar[5]arene [J]. Chemical Communications,2010,46(21):3708-3710.
[20] STRUTT N L, ZHANG H C, GIESENER M A, et al. A self-complexing and self-assembling pillar[5]arene [J]. Chemical Communications, 2012, 48 (11): 1647-1649.
[21] OGOSHI T, YOSHIKOSHI K, AOKI T, et al. Photoreversible switching between assembly and disassembly of a supramolecular polymer involving an azobenzene-bridged pillar[5]arene dimer [J]. Chemical Communications,2013,49(78):8785-8787.
[22] XIA B Y, ZHENG B, HAN C Y, et al. A novel pH-responsive supramolecular polymer constructed by pillar[5]arene-based host-guest interactions [J]. Polymer Chemistry, 2013, 4 (6): 2019-2024.
[23] OGOSHI T, DEMACHI K, KITAJIMA K, et al. Monofunctionalized pillar[5]arenes: synthesis and supramolecular structure [J]. Chemical Communi-cations, 2011, 47 (25): 7164-7166.
[24] HAN C Y, XIA B Y, CHEN J Z, et al. A pillar[5]arene-based anion responsive supramolecular polymer [J]. Royal Society of Chemistry Advances, 2013, 3 (36): 16089-16094.
[25] WANG K, WANG C Y, WANG Y, et al. Electrospun nanofibers and multi-responsive supramolecular assemblies constructed from a pillar[5]arene-based receptor [J]. Chemical Communi-cations, 2013, 49 (89): 10528-10530.
[26] ZHANG Z B, LUO Y, CHEN J Z, et al. Formation of linear supramolecular polymers that is driven by C-H-π interactions in solution and in the solid state [J].Angewandte Chemie (International Edition), 2011, 50 (6): 1397-1401.
[27] SONG N, CHEN D X, XIA M C, et al. Supramolecular assembly-induced yellow emission of 9,10-distyrylanthracene bridged bis(pillar[5]arene)s [J]. Chemical Communications, 2015, 51 (25): 5526-5529.
[28] YANG X Y, CAI W Q, DONG S, et al. Fluorescent supramolecular polymers based on pillar[5]arene for oled device fabrication [J]. ACS Macro Letters, 2017, 6 (7): 647-651.
[29] GUAN Y F, NI M, F, HU X Y, et al. Pillar[5]arene-based polymeric architectures constructed by orthogonal supramolecular interactions [J]. Chemical Communications, 2012, 48 (68): 8529-8531.
[30] HU X Y, WU X, WANG S, et al. Pillar[5]arene-based supramolecular polypseudorotaxane polymer networks constructed by orthogonal self-assembly [J]. Polymer Chemistry, 2013, 4 (16): 4292-4297.
[31] GAO L Y, ZHANG Z B, ZHENG B, et al. Construction of muscle-like metallo-supramolecular polymers from a pillar[5]arene-based [c2]daisy chain [J]. Polymer Chemistry, 2014, 5 (19): 5734-5739.
[32] LIU S Y, WU Q X, ZHANG T Z, et al. Supramolecular brush polymers prepared from 1,3,4-oxadiazole and cyanobutoxy functionalised pillar[5]arene for detecting Cu2+[J]. Organic and Bio-molecular Chemistry, 2021, 19 (6): 1287-1291.
[33] WANG S L, WANG Y L, CHEN Z X, et al. The marriage of endo-cavity and exo-wall complexation provides a facile strategy for supramolecular polymerization [J]. Chemical Communications, 2015, 51 (16): 3434-3437.
[34] CHEN P P, MONDAL J H, ZHOU Y J, et al. Construction of a neutral linear supramolecular polymer via orthogonal donor-acceptor interactions and pillar[5]arene-based molecular recognition [J]. Polymer Chemistry, 2016, 7 (33): 5221-5225.
[35] XU J F, CHEN Y Z, WU L Z, et al. Dynamic covalent bond based on reversible photo [4 + 4] cycloaddition of anthracene for construction of double-dynamic polymers [J]. Organic Letters, 2013, 15 (24): 6148-6151.
[36] LIU P, LI Z T, SHI B B, et al. Formation of linear side-chain polypseudorotaxane with supramolecular polymer backbone through neutral halogen bonds and pillar[5]arene-based host-guest interactions [J]. Chemistry, 2018, 24 (17): 4264-4267.
[37] LI H, FAN X D, QI M, et al. Supramolecular alternating polymer from crown ether and pillar[5]arene-based double molecular recognition for preparation of hierarchical materials [J]. Chemistry, 2016, 22 (1): 101-105.
[38] OGOSHI T, KAYAMA H, YAMAFUJI D, et al. Supramolecular polymers with alternating pillar[5]arene and pillar[6]arene units from a highly selective multiple host-guest complexation system and monofunctionalized pillar[6]arene [J]. Chemical Science, 2012, 3 (11): 3221-3226.
[39] WANG X Y, DENG H M, LI J, et al. A neutral supramolecular hyperbranched polymer fabricated from an AB2-type copillar[5]arene [J]. Macro-molecular Rapid Communications, 2013,34(23/24): 1856-1862.
[40] LIU Y, ZHANG Y, ZHU H, et al. A supramolecular hyperbranched polymer with multi-responsiveness constructed by pillar[5]arene-based host-guest recognition and its application in the breath figure method [J]. Materials Chemistry Frontiers, 2018, 2 (8): 1568-1573.
[41] LI H, CHEN W Z, XU F F, et al. A color-tunable fluorescent supramolecular hyperbranched polymer constructed by pillar[5]arene-based host-guest recognition and metal ion coordination interaction [J]. Macromolecular Rapid Communations, 2018, 39 (10): 1800053:1-6.
[42] LI H, FAN X D, SHANG X M, et al. A triple-monomer methodology to construct controllable supramolecular hyperbranched alternating polymers [J]. Polymer Chemistry, 2016, 7 (26): 4322-4325.
[43] FANG L, HU Y L, LI Q, et al. Fluorescent cross-linked supramolecular polymers constructed from a novel self-complementary AABB-type hetero-multitopic monomer [J]. Organic and Biomolecular Chemistry,2016,14 (17): 4039-4045.
[44] WU J, SUN S, FENG X Q, et al. Controllable aggregation-induced emission based on a tetraphenylethylene-functionalized pillar[5]arene via host-guest recognition [J]. Chemical Communi-cations, 2014, 50 (65): 9122-9125.
[45] LI Z Y, ZHANG Y Y, ZHANG C W, et al. Cross-linked supramolecular polymer gels constructed from discrete multi-pillar[5]arene metallacycles and their multiple stimuli-responsive behavior [J]. Journal of the American Chemical Society, 2014, 136 (24): 8577-8589.
[46] SUN Y, WANG J, YAO Y. The first water-soluble pillar[5]arene dimer: synthesis and construction of a reversible fluorescent supramolecular polymer network in water [J]. Chemical Communications, 2016, 53 (1): 165-167.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2021-10-13
基金项目:武汉工程大学研究生教育创新基金(CX2020013)
作者简介:付 臻,硕士研究生。E-mail :986007211@qq.com
*通讯作者:刘 慧,博士,副教授 。E-mail :huiliu@wit.edu.cn
引文格式:付臻,刘慧. 基于柱芳烃超分子聚合物拓扑结构的研究进展[J]. 武汉工程大学学报,2022,44(6):591-598.

更新日期/Last Update: 2023-01-08