|本期目录/Table of Contents|

[1]明 巍,肖雅琪,胡 莎,等.新型冠状病毒肺炎(COVID-19)临床治疗化学药物述评[J].武汉工程大学学报,2022,44(05):473-481.[doi:10.19843/j.cnki.CN42-1779/TQ.202206028]
 MING Wei,XIAO Yaqi,HU Sha,et al.Review of Chemical Drugs for Clinical Treatment of COVID-19[J].Journal of Wuhan Institute of Technology,2022,44(05):473-481.[doi:10.19843/j.cnki.CN42-1779/TQ.202206028]
点击复制

新型冠状病毒肺炎(COVID-19)临床治疗化学药物述评(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
44
期数:
2022年05期
页码:
473-481
栏目:
50周年校庆特刊
出版日期:
2022-10-31

文章信息/Info

Title:
Review of Chemical Drugs for Clinical Treatment of COVID-19

文章编号:
1674 - 2869(2022)05 - 0473 - 09
作者:
明 巍1肖雅琪1胡 莎1朱园园2古双喜*1
1. 武汉工程大学化工与制药学院,绿色化工过程教育部重点实验室(武汉工程大学),湖北 武汉 430205;
2. 武汉工程大学化学与环境工程学院,湖北 武汉 430205
Author(s):
MING Wei1 XIAO Yaqi1 HU Sha1 ZHU Yuanyuan2 GU Shuangxi*1

1. School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology; Key Laboratory of Green Chemical Process (Wuhan Institute of Technology), Ministry of Education, Wuhan 430205, China;
2. School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China

关键词:
新型冠状病毒肺炎药物重定位临床应用作用机制
Keywords:
COVID-19 drug repurposing clinical application action mechanism
分类号:
R373.1
DOI:
10.19843/j.cnki.CN42-1779/TQ.202206028
文献标志码:
A
摘要:
概述了国内外已获批准的6种治疗新型冠状病毒肺炎(COVID-19)的小分子化学药物:Remdesivir(GS-5734)、Molnupiravir(MK-4482, EIDD-2801)、Paxlovid(Nirmatrelvir/Ritonavir, PF-07321332/Ritonavir)、Renmindevir(VV116)、Baricitinib和Azvudine(FNC)。从药物发现、作用机制、临床应用和市场前景方面对上述六种药物进行了全面的综述,指出这些COVID-19治疗药物均是基于药物重定位策略被开发上市的。并对COVID-19治疗药物的研发现状、发现新策略、合成新方法与生产新技术进行了展望,旨在给未来COVID-19药物的研究与开发提供有益的参考。
Abstract:
The six currently approved drugs for the clinical chemotherapy of Corona virus disease 2019 (COVID-19) were summarized, including Remdesivir (GS-5734), Molnupiravir (MK-4482, EIDD-2801), Paxlovid (Nirmatrelvir/Ritonavir, PF-07321332/Ritonavir), Renmindevir (VV116), Baricitinib and Azvudine (FNC), which were all discovered as COVID-19 drugs by drug repurposing strategy. The above six drugs were comprehensively reviewed from the aspects of drug discovery, action mechanism, clinical application and market prospect. And the research and development status, new discovery strategy, new synthetic method and production technology for COVID-19 drugs were prospected. This review provides useful references for the research and development of COVID-19 drugs in the future.

参考文献/References:

[1] HU B, GUO H, ZHOU P, et al. Characteristics of SARS-CoV-2 and COVID-19[J]. Nature Reviews Microbiology, 2021, 19(3): 141-154.

[2] LAMERS M M, HAAGMANS B L. SARS-CoV-2 pathogenesis[J]. Nature Reviews Microbiology, 2022, 20(5): 270-284.
[3] WORLD HEALTH ORGANIZATION. Coronavirus (COVID-19) dashboard[EB/OL].(2022-06-15)[2022-06-20]. https://covid19.who.int/.
[4] CREECH C B, WALKER S C, SAMUELS R J. SARS-CoV-2 vaccines[J]. JAMA-Journal of the American Medical Association,2021,325(13): 1318- 1320.
[5] MCKEE D L, STERNBERG A, STANGE U, et al. Candidate drugs against SARS-CoV-2 and COVID-19[J]. Pharmacological Research, 2020, 157: 104859:1-9.
[6] 杨璐, 王辉强, 李玉环. COVID-19治疗药物的研究进展[J]. 药学学报, 2020, 55(6): 1081-1090.
[7] 刘玉,明巍,李陈宗,等. 拟肽类冠状病毒主蛋白酶抑制剂的研究进展[J]. 药学学报, 2022,57(7):1977- 1990.
[8] WARREN T K, JORDAN R, LO M K, et al. Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys[J]. Nature, 2016, 531(7594): 381-385.
[9] SHEAHAN T P, SIMS A C, GRAHAM R L, et al. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses[J]. Science Translational Medicine, 2017, 9(396): eaal3653:1-11.
[10] EASTMAN R T, ROTH J S, BRIMACOMBE K R, et al. Remdesivir: a review of its discovery and development leading to emergency use authorization for treatment of COVID-19[J]. ACS Central Science, 2020, 6(5): 672-683.
[11] 张儒, 孙子茹, 刘胜男, 等. 新型冠状病毒治疗药物的研究现状及展望[J]. 科学通报, 2022, 67(10): 933-947.
[12] 张宇鑫. 瑞德西韦 (Remdesivir, Veklury) [J]. 中国药物化学杂志, 2021, 31(10): 859.
[13] HOLSHUE M L, DEBOLT C, LINDQUIST S, et al. First case of 2019 novel coronavirus in the United States[J]. New England Journal of Medicine, 2020, 382(10): 929-936.
[14] SPINNER C D, GOTTLIEB R L, CRINER G J, et al. Effect of remdesivir vs standard care on clinical status at 11 days in patients with moderate COVID-19: a randomized clinical trial[J]. Journal of the American Medical Association,2020,324(11): 1048-1057.
[15] ARBA M, WAHYUDI S T, BRUNT D J, et al. Mechanistic insight on the remdesivir binding to RNA-Dependent RNA polymerase (RdRp) of SARS-CoV-2[J]. Computers in Biology and Medicine, 2021, 129: 104156:1-11.
[16] KOKIC G, HILLEN H S, TEGUNOV D, et al. Mechanism of SARS-CoV-2 polymerase stalling by remdesivir[J]. Nature Communications, 2021, 12: 279:1-7.
[17] YIN W C, MAO C Y, LUAN X D, et al. Structural basis for the inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir[J]. Science, 2020, 368(6498): 1499-1504.
[18] LAMB Y N. Remdesivir: first approval[J]. Drugs, 2020, 80(13): 1355-1363.
[19] U.S. Food and Drug Administration. Coronavirus (COVID-19) update: FDA approves first COVID-19 treatment for young children[EB/OL].(2022-04-25)[2022-06-20]. https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-
approves-first-covid-19-treatment-young-children.
[20] GARIBALDI B T, WANG K, ROBINSON M L, et al. Comparison of time to clinical improvement with vs without remdesivir treatment in hospitalized patients with COVID-19[J]. Journal of the American Medical Association, 2021, 4(3): e213071:1-14.
[21] 吉利德科学公司. 吉利德科学2021年第四季度及全年财务报告摘要[EB/OL].(2022-02-02)[2022-06-20]. https://www.gileadchina.cn/-/media/gilead-china/pdfs/news-and-press/press-releases/gildq4fy21earning spressreleasecn.
[22] 吉利德科学公司. 吉利德科学发布2022年第一季度财务报告[EB/OL].(2022-04-29)[2022-06-20]. https://www.gileadchina.cn/-/media/gilead-china/pdfs/news-and-press/press-releases/20220429-02.
[23] SHEAHAN T P, SIMS A C, ZHOU S T, et al. An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice[J]. Science Translational Medicine, 2020, 12(541): eabb5883:1-20.
[24] WAHL A, GRALINSKI L E, JOHNSON C E, et al. SARS-CoV-2 infection is effectively treated and prevented by EIDD-2801[J]. Nature, 2021, 591(7850): 451-457.
[25] COX R M, WOLF J D, PLEMPER R K. Therapeutically administered ribonucleoside analogue MK-4482/EIDD-2801 blocks SARS-CoV-2 transmission in ferrets[J]. Nature Microbiology, 2021, 6(1): 11-18.
[26] TOOTS M, YOON J J, HART M, et al. Quantitative efficacy paradigms of the influenza clinical drug candidate EIDD-2801 in the ferret model[J]. Translational Research, 2020, 218: 16-28.
[27] AGOSTINI M L, PRUIJSSERS A J, CHAPPELL J D, et al. Small-molecule antiviral beta-D-N4-hydroxycytidine inhibits a proofreading-intact coronavirus with a high genetic barrier to resistance[J]. Journal of Virology, 2019, 93(24): e01348-19:1-14.
[28] KABINGER F, STILLER C, SCHMITZOVA J, et al. Mechanism of molnupiravir-induced SARS-CoV-2 mutagenesis[J]. Nature Structural & Molecular Biology, 2021, 28(9): 740-746.
[29] URAKOVA N, KUZNETSOVA V, CROSSMAN D K, et al. Beta-d-N4-hydroxycytidine is a potent anti-alphavirus compound that induces a high level of mutations in the viral genome[J]. Journal of Virology, 2018, 92(3): e01965-17:1-22.
[30] 孟晗, 于芳, 何宇鹏, 等. 新型口服广谱抗病毒药物—EIDD-2801[J]. 临床药物治疗杂志, 2020, 18(7): 12-15.
[31] U.S. FOOD AND DRUG ADMINISTRATION. EUA 108 Merck Molnupiravir 03232022[EB/OL].(2022-03-23)[2022-06-20]. https://www.fda.gov/media/155053/download.
[32] 默沙东公司. 默沙东公布2021年第四季度和年度财务业绩[EB/OL].(2022-02-03)[2022-06-20]. https://www.msdchina.com.cn/media/newsroom/company_news_2022-02-03.html.
[33] OWEN D R, ALLERTON C M N, ANDERSON A S, et al. An oral SARS-CoV-2 Mpro inhibitor clinical candidate for the treatment of COVID-19[J]. Science, 2021, 374(6575): 1586-1593.
[34] 王欢, 张铖. 口服新型冠状病毒肺炎治疗新药—Paxlovid[J]. 临床药物治疗杂志, 2022, 20(2): 13-17.
[35] PFIZER. Pfizer reports first-quarter 2022 results[EB/OL].(2022-05-03)[2022-06-20]. https://s28.q4cdn.com/781576035/files/doc_financials/2022/q1/Q1-2022- PFE-Earnings-Release.
[36] XIE Y C, YIN W C, ZHANG Y M, et al. Design and development of an oral remdesivir derivative VV116 against SARS-CoV-2[J]. Cell Research, 2021, 31(11): 1212-1214.
[37] WEI D B, HU T W, ZHANG Y M, et al. Potency and pharmacokinetics of GS-441524 derivatives against SARS-CoV-2[J]. Bioorganic & Medicinal Chemistry, 2021, 46: 116364:1-12.
[38] SHEN Y Z, AI J W, LIN N, et al. An open, prospective cohort study of VV116 in Chinese participants infected with SARS-CoV-2 omicron variants[J]. Emerging Microbes & Infections, 2022, 11(1): 1518-1523.
[39] MAHASE E. COVID-19: anti-inflammatory treatment baricitinib reduces deaths in patients admitted to hospital, finds trial[J]. BMJ-British Medical Journal, 2022, 376: o573:1.
[40] ZHANG X H, ZHANG Y, QIAO W Z, et al. Baricitinib, a drug with potential effect to prevent SARS-COV-2 from entering target cells and control cytokine storm induced by COVID-19[J]. International Immunopharmacology,2020,86: 106749.
[41] KIM J S, LEE J Y, YANG J W, et al. Immunopathogenesis and treatment of cytokine storm in COVID-19[J]. Theranostics,2021,11(1): 316-329.
[42] U. S. FOOD AND DRUG ADMINISTRATION. Baricitinib EUA fact sheet for HCP[EB/OL].(2022-05)[2022-06-20]. https://www.fda.gov/media/143823/download.
[43] INCYTE. FDA approves Lilly and Incyte’s OLUMIANT? (baricitinib) for the Ttreatment of certain hospitalized patients with COVID-19[EB/OL].(2022-05-11)[2022-06-20]. https://www.prnewswire.com/news - releases / fda-approves - lilly - and - incytes-olumiant - baricitinibfor - the - treatment - of - certain -hospitalized-patients-with-covid-19-301544527.html.
[44] FAYZULLINA D, KHARWAR R K, ACHARYA A, et al. FNC: an advanced anticancer therapeutic or just an underdog[J]. Frontiers in Oncology, 2022, 12: 820647:1-8.
[45] YU B, CHANG J B. Azvudine (FNC): a promising clinical candidate for COVID-19 treatment[J]. Signal Transduction and Targeted Therapy,2020,5:236:1-2.
[46] ZHANG J L, LI Y H, WANG L L, et al. Azvudine is a thymus-homing anti-SARS-CoV-2 drug effective in treating COVID-19 patients[J]. Signal Transduction and Targeted Therapy, 2021, 6: 414:1-15.
[47] 顾觉奋. 新型冠状病毒肺炎临床治疗药物最新研究进展[J]. 中国新药杂志, 2021, 30(2): 154-161.
[48] 马密霞, 秦宁, 闵清, 等. 抗新型冠状病毒肺炎药物研究进展[J]. 武汉工程大学学报, 2020, 42(3): 237-245.
[49] 黄璐, 古双喜. 用于COVID-19潜在治疗的小分子药物及专利研究[J]. 中国医药工业杂志, 2020, 51(4): 467-475.
[50] 宋乐天, 程玉森, 高升华, 等. 人冠状病毒广谱抑制剂的研究进展[J]. 中国药物化学杂志, 2021, 31(9): 721-738.
[51] 熊阿珍, 孟光兴. 药物重定位候选药物筛选路径[J]. 中国医药工业杂志, 2020, 51(2): 170-175.
[52] PUSHPAKOM S, IORIO F, EYERS P A, et al. Drug repurposing: progress, challenges and recommendations[J]. Nature Reviews Drug Discovery, 2019, 18(1): 41-58.
[53] 古双喜, 石正丽, 明巍, 等. 吲哚哌啶嘧啶类衍生物在制备新型冠状病毒抑制剂中的应用: 114588158A[P]. 2022-06-07.
[54] WHO SOLIDARITY TRIAL CONSORTIUM. Repur-posed antiviral drugs for covid-19 - interim who solidarity trial results[J]. New England Journal of Medicine, 2021, 384(6): 497-511.
[55] MA Y, FRUTOS-BELTRAN E, KANG D W, et al. Medicinal chemistry strategies for discovering antivirals effective against drug-resistant viruses[J]. Chemical Society Reviews,2021,50(7): 4514-4540.
[56] GAO S H, HUANG T G, SONG L T, et al. Medicinal chemistry strategies towards the development of effective SARS-CoV-2 inhibitors[J]. Acta Pharmaceutica Sinica B, 2022, 12(2): 581-599.
[57] XIONG M Y, NIE T Q, SHAO Q, et al. In silico screening-based discovery of novel covalent inhibitors of the SARS-CoV-2 3CL protease[J]. European Journal of Medicinal Chemistry, 2022, 231: 114130:1-8.
[58] 刘玎, 朱园园, 古双喜, 等. 流动化学在卤化反应中的应用[J]. 有机化学, 2021, 41(3): 1002-1011.
[59] ATOBE M, TATENO H, MATSUMURA Y. Applica-tions of flow microreactors in electrosynthetic processes[J]. Chemical Reviews, 2018, 118(9): 4541-4572.
[60] 苏为科, 余志群. 连续流反应技术开发及其在制药危险工艺中的应用[J]. 中国医药工业杂志, 2017, 48(4): 469-482.
[61] TANG P, NIE B, HUANG J Z, et al. Recent advances of pharmaceutical process chemistry and its innovation in China: Part 1[J]. Pharmaceutical Fronts, 2020, 2(1): e28-e54.
[62] 柯彩霞, 徐德蛟, 闫云君, 等. 生物酶法拆分手性药物的研究进展[J].武汉工程大学学报,2016,38(6): 517-520.
[63] EGOROV I N, SANTRA S, KOPCHUK D S, et al. Ball milling: an efficient and green approach for asymmetric organic syntheses[J]. Green Chemistry, 2020, 22(2): 302-315.
[64] KWON K, SIMONS R T, NANDAKUMAR M, et al. Strategies to generate nitrogen-centered radicals that may rely on photoredox catalysis: development in reaction methodology and applications in organic synthesis[J]. Chemical Reviews, 2022, 122(2): 2353-2428.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2022-06-21
基金项目:国家自然科学基金(21877087, 22074114);湖北省自然科学基金(2020CFB623, 2021CFB556);武汉工程大学研究生创新基金(CX2021026);药物关键制备技术教育部重点实验室(郑州大学)2020年开放课题(ZKF202003)
作者简介:明 巍,硕士研究生。E-mail:immingwei@163.com
*通讯作者:古双喜,博士,教授。E-mail:shuangxigu@163.com
引文格式:明巍,肖雅琪,胡莎, 等. 新型冠状病毒肺炎(COVID-19)临床治疗化学药物述评[J]. 武汉工程大学学报,2022,44(5):473-481.

更新日期/Last Update: 2022-11-01