|本期目录/Table of Contents|

[1]潘子萌,刘 凯,马子琦,等.基于阿秒光电子谱研究金属光电子色散关系[J].武汉工程大学学报,2022,44(03):315-319.[doi:10.19843/j.cnki.CN42-1779/TQ.202202020]
 PAN Zimeng,LIU Kai,MA Ziqi,et al.Metal Electron Dispersion by Attosecond Photoelectron Spectroscopy[J].Journal of Wuhan Institute of Technology,2022,44(03):315-319.[doi:10.19843/j.cnki.CN42-1779/TQ.202202020]
点击复制

基于阿秒光电子谱研究金属光电子色散关系(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
44
期数:
2022年03期
页码:
315-319
栏目:
机电与信息工程
出版日期:
2022-06-30

文章信息/Info

Title:
Metal Electron Dispersion by Attosecond Photoelectron Spectroscopy
文章编号:
1674 - 2869(2022)03 - 0315 - 05
作者:
潘子萌刘 凯马子琦廖 青*
武汉工程大学光电信息与能源工程学院,湖北 武汉 430205
Author(s):
PAN Zimeng LIU Kai MA Ziqi LIAO Qing*
School of Optical Information and Energy Engineering, Wuhan Institute of Technology, Wuhan 430205, China
关键词:
阿秒光发射时间光电子频谱图周期势
Keywords:
attosecond photoemission time photoelectron spectrogram periodic potential
分类号:
O437
DOI:
10.19843/j.cnki.CN42-1779/TQ.202202020
文献标志码:
A
摘要:
为更加准确揭示单晶金属中光电子输运时间与可观测的光发射时间之间的尺度关系,采用周期性势阱来描述光电子在金属内部的势能。通过量子力学数值计算得到光电子频谱图,观察从模拟得到的阿秒光电子谱图中提取的光电子发射时间与势阱深度及穿越金属厚度的关系,得出光电子输运时间随穿越金属厚度变化是非线性的,势阱深度由-10 eV减小到-5 eV时,非线性更加显著。结果验证了金属内部能量—动量关系强烈依赖于金属势能的具体形式。
Abstract:
To accurately reveal a scaling relation between the photoelectron transport time and the observable photoemission time in the single-crystal metals, a periodic potential well was employed to represent the potentials of photoelectrons inside metals. The photoelectron spectrogram was obtained by numerical calculation of quantum mechanics, and the functional relation between the photoemission time extracted from attosecond photoelectron spectrogram and the potential well depth and transported metal thickness was obtained. The variation of photoelectron transport time with metal thickness is nonlinear. When the potential well depth reduces from -10 eV to -5 eV, the nonlinearity is more significant. The results verify that the energy-momentum relation inside the metal strongly depends on the specific form of the metal potential energy.

参考文献/References:

[1] BRABEC T, KRAUSE F. Intense few-cycle laser fields: frontiers of nonlinear optics[J]. Reviews of Modern Physics,2000,72(2):545-591.

[2] KARTNER F X, MORGNER U, ELL R,et al. Few-cycle laser pulse generation and its applications[M].Berlin:Heidelbeng Springer,2004.
[3] 吴涛,王新兵,王世芳,等.高能脉冲CO2激光等离子体波导的研究[J].武汉工程大学学报,2009,31(12),82-86.
[4] KRAYSE J L,SCHFER K J,KULANDER K C. High-order harmonic generation from atoms and ions in the high intensity regime[J]. Physical Review Letters,1992,68(24):3535-3538.
[5] LEWENSTEIN M,BALCOU P,VANOV M Y,et al. Theory of high-harmonic generation by low-frequency laser fields[J]. Physical Review A,1994,49(3):2117-2132.
[6] MCPHERSON A,GIBSON G,JARA H,et al. Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases[J]. Journal of Optical Society of America B,1987,4(4):595-601.
[7] POPMINTCHEV T,CHEN M C,ARPIN P,et al. The attosecond nonlinear optics of bright coherent X-ray generation[J].Nature Photonics,Nature Publishing Group,2010,4(12):822-832.
[8] CORKUM P B. Plasma perspective on strong-field multiphoton ionization[J]. Physical Review Letters,1993,71(13):1994-1997.
[9] SCRINZI A, IVANOV M Y, KIENBERGER R,et al. Attosecond physics[J]. Journal of Physics B:Atomic,Molecular and Optical Physics,2006,39(1):1-37.
[10] LOCHER R, CASTIGLIONI L, LUCCHINI M, et al. Energy-dependent photoemission delays from noble metal surfaces by attosecond interferometry[J]. Optica, 2015, 2(5):405-410.
[11] LIAO Q,CAO W,LU P X,et al. Distinction of electron dispersion in time-resolved photoemission spectroscopy [J]. Physical Review Letters,2020,125(4):3201-3206.
[12] PAUL P,TOMA E S,BREGER P,et al. Observation of a train of attosecond pulses from high harmonic generation[J]. Science,2001,292(11):1689-1692.
[13] OKELL W A, WITTING T, FABRIS D, et al. Temporal broadening of attosecond photoelectron wave packets from solid surfaces[J]. Optica,2015,2(4):383-387.
[14] CHULKOV E V,SILKIN V M,ECHENIQUE P M. Image potential states on metal surfaces: binding energies and wave functions Surface[J]. Science,1999,437(3):330-352.
[15] KRASOVSKII E. Attosecond spectroscopy of solids:streaking phase shift due to lattice scattering[J]. Physical Review B,2011,84(19):3096-3100.
[16] KLUNDER K,DAHLSTRM J M,GISSELBRECHT M,et al. Probing single-photon ionization on the attosecond time scale[J]. Physical Review Letters,2011,106(14):3002-3006.
[17] BAYKUSHEVA D,WOERNER H J,et al. Theory of attosecond delays in molecular photoionization[J]. The Journal of Chemical Physics,2017,146(12):4306-4310.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2022-02-26
基金项目:湖北省自然科学基金(?2020CFA082)
作者简介:潘子萌,硕士研究生。E-mail: 511601513@qq.com
*通讯作者:廖 青,博士,教授。E-mail: liaoqing@wit.edu.cn
引文格式:潘子萌,刘凯,马子琦,等. 基于阿秒光电子谱研究金属光电子色散关系[J]. 武汉工程大学学报,2022,44(3):315-319.

更新日期/Last Update: 2022-06-29