|本期目录/Table of Contents|

[1]吴凤麒,祁 康,黄华良*.薄层液膜下外加直流电场对Cu/Ag电偶腐蚀行为的影响[J].武汉工程大学学报,2022,44(03):266-273.[doi:10.19843/j.cnki.CN42-1779/TQ.202112002]
 WU Fengqi,QI Kang,HUANG Hualiang*.Effect of External Direct Current Electric Field on Galvanic Corrosion Behavior of Cu/Ag Under Thin Electrolyte Layer[J].Journal of Wuhan Institute of Technology,2022,44(03):266-273.[doi:10.19843/j.cnki.CN42-1779/TQ.202112002]
点击复制

薄层液膜下外加直流电场对Cu/Ag电偶腐蚀行为的影响(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
44
期数:
2022年03期
页码:
266-273
栏目:
化学与化学工程
出版日期:
2022-06-30

文章信息/Info

Title:
Effect of External Direct Current Electric Field on Galvanic Corrosion Behavior of Cu/Ag Under Thin Electrolyte Layer
文章编号:
1674 - 2869(2022)03 - 0266 - 08
作者:
吴凤麒祁 康黄华良*
武汉工程大学化学与环境工程学院,湖北 武汉 430205
Author(s):
WU Fengqi QI Kang HUANG Hualiang*
School of Chemistry and Environmental Engineering,Wuhan Institute of Technology,Wuhan 430205,China

关键词:
直流电场电偶腐蚀极化电化学阻抗谱薄液膜
Keywords:
direct current electric field galvanic corrosion copper polarization electrochemical impedance spectroscopy thin electrolyte liquid
分类号:
O646.6
DOI:
10.19843/j.cnki.CN42-1779/TQ.202112002
文献标志码:
A
摘要:
为探明薄层液膜下外加直流电场(DCEF)对Cu/Ag电偶腐蚀行为的影响机制,通过开路电位、电化学阻抗谱和极化曲线等电化学测试,并结合表面分析技术,研究了在薄层液膜条件下,外加DCEF中Cu/Ag电偶腐蚀行为。结果表明:外加DCEF后,铜的腐蚀电位明显正移,阴极电流密度和自腐蚀电流密度减小,阻抗增大,这表明了DCEF减缓了铜的腐蚀速率。与有电场无电流相比,有电流时,铜的腐蚀电位正移,阴极电流密度减小,阻抗略微增大。表明漏电电流能够进一步抑制铜银之间的电偶腐蚀速率,这归因于DCEF负极处的析氢反应使得局部OH-离子浓度的增加,在电场梯度的作用下向电场正极迁移,从而导致电偶腐蚀的阴极过程受到抑制。不同条件下铜和银之间的电偶电流密度大小顺序为:偶合>偶合有电场无电流>偶合有电场有电流,这归因于DCEF降低了铜银的电位差,削弱了铜银之间的电偶腐蚀效应;而漏电电流则加速了电场阴极处因析氢产生的OH-离子向电场正极迁移,导致电偶腐蚀的阴极过程被显著抑制。
Abstract:
To investigate the influence of applied direct current electric field (DCEF) on the galvanic corrosion behavior of Cu/Ag under a thin electrolyte layer, the galvanic corrosion behavior of Cu/Ag with a DCEF under a thin electrolyte layer was investigated by electrochemical tests including open-circuit potential, electrochemical impedance spectroscopy and polarization curve, combined with surface analysis technology. The experimental results show that the corrosion potential of copper changes significantly under a DCEF, the cathodic current density and self-corrosion current density decrease, and the impedance increases, which indicates the DCEF slows down the corrosion rate of copper. Compared with that under a DCEF without current, the corrosion potential of copper under a DCEF with current moves positively, the cathodic current density of copper decreases, and the impedance increases slightly. This indicates that the leakage current can further inhibit the galvanic corrosion of copper. This can be explained as follows: the hydrogen evolution at the negative electrode of DCEF leads to the increase of the concentration of local OH- ions, and the produced OH- ions migrate to the positive electrode of DCEF, eventually inhibiting the cathodic process of galvanic corrosion. Under different conditions, the order of the galvanic current densityof Cu/Ag is: coupled>coupled under electric field without electric current>coupled under electric field with electric current.This can be ascribed that DCEF reduces the potential difference between copper and silver, and weakens the galvanic corrosion effect.However, the leakage current accelerates the migration of OH- ions caused by hydrogen evolution to the positive electrode of DCEF, resulting in significant inhibition of the cathodic process of galvanic corrosion.

参考文献/References:

[1] JELLESEN M S, MINZARI D, RATHINAVELU U. Investigation of electronic corrosion at device level[J]. ECS Transactions, 2010, 25(30):1-14.

[2] VIMALA J, NATESAN M, KANNAN K. Corrosion of electronics contact metals in urban industrial environment[J]. Journal of Metallurgy and Materials Science, 2009, 51(4):287-295.
[3] CONGLETON J, CHARLES E A, SUI G. Review on effect of cyclic loading on environmental assisted cracking of alloy 600 in typical nuclear coolant waters[J]. Corrosion Science, 2001, 43(12):2265-2279.
[4] CHENG J, PANJ S, WANG T Q, et al. Micro-galvanic corrosion of Cu/Ru couple in potassium periodate (KIO4) solution[J]. Corrosion Science, 2018, 137(5):184-193.
[5] 陈兴伟, 吴建华, 王佳, 等. 电偶腐蚀影响因素研究进展[J]. 腐蚀科学与防护技术, 2010, 22(4):363-366.
[6] FAN X L, CHEN Y X, ZHANG J X, et al. Galvanic corrosion behavior of copper-drawn steel for grounding grids in the acidic red soil simulated solution[J]. ActaMetallurgicaSinica-English Letters, 2020, 33(11):1571-1582.
[7] PEI Z B, ZHANG D W, ZHI Y J, et al. Towards understanding and prediction of atmospheric corrosion of an Fe/Cu corrosion sensor via machine learning[J]. Corrosion Science, 2020, 170:108697:1-9.
[8] CONSEIL-GUDLA H, JELLESEN M S, AMBAT R. Printed circuit board surface finish and effects of chloride contamination, electric field, and humidity on corrosion reliability[J]. Electronic Materials Letters,2017,46(2):817-825.
[9] 胡露露, 赵旭阳, 刘盼, 等. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4):342-350.
[10] HUANG H L, BU F R,TIAN J, et al. Influence of direct current electric field on corrosion behavior of tin under a thin electrolyte layer[J]. Journal of Electronic Materials, 2017, 46(12):6936-6946.
[11] YANG W L, LIU Z Q, HUANG H L. Galvanic corrosion behavior between AZ91D magnesium alloy and copper in distilled water[J]. Corrosion Science, 2021, 188(10):109562:1-15.
[12] HU S B, LIU R, LIU L, et al. Influence of tempera-ture and hydrostatic pressure on the galvanic corrosion between 90/10 Cu-Ni and AISI 316L stainless steel[J]. Journal of Materials Research and Technology, 2021, 13:1402-1415.
[13] ZHOU H R, LI X G, MA J, et al. Dependence of the corrosion behavior of aluminum alloy 7075 on the thin electrolyte layers[J]. Materials Science and Engineering: B, 2009, 162(1):1-8.
[14] HUANG H L, PAN Z Q, GUO X P, et al. Effects of direct current electric field on corrosion behaviour of copper, Cl-ion migration behaviour and dendrites growth under thin electrolyte layer[J]. Transactions of Nonferrous Metals Society of China, 2014,24(1):285-291.
[15] LIAO X N,CAO F H, ZHENG L Y, et al. Corrosion behaviour of copper under chloride-containing thin electrolyte layer[J]. Corrosion Science, 2011, 53(10):3289-3298.
[16] HUANG H L, DONG Z H, CHEN Z Y, et al. The effects of Cl- ion concentration and relative humidity on atmospheric corrosion behaviour of PCB-Cu under adsorbed thin electrolyte layer[J]. Corrosion Science, 2011, 53(4):1230-1236.
[17] HUANG H L, PAN Z Q, QIU Y B, et al. Electrochemical corrosion behaviour of copper under periodic wet-dry cycle condition[J]. Microelectronics Reliability, 2013, 53(8):1149-1158.
[18] HERNáNDEZR P B, PáSZTI Z, DE MELOHG, et al.Chemical characterization and anticorrosion properties of corrosion products formed on pure copper in synthetic rainwater of Rio de Janeiro and S?oPaulo[J]. Corrosion Science, 2010, 52(3):826-837.
[19] AMBAT R, M?LLERP. Corrosion investigation of material combinations in a mobile phone dome-key pad system[J]. Corrosion Science, 2007, 49(7):2866-2879.
[20] KHOSHALAN H A, SHAKERI J, NAJMODDINI I,et al. Forecasting copper price by application of robust artificial intelligence techniques [J]. Resources Policy, 2021, 73:102239:1-11.
[21] ARRAM, SHANGGUAND K, XIED J, et al. Study of immersion silver and tin printed-circuit-board surfacefinishes in lead-free solder applications[J]. Electronic Materials Letters, 2004, 33(9):977-990.
[22] WANGW Q, CHOUBEYA, AZARIANM H, et al. An assessment of immersion silver surfacefinish for lead-free electronics[J]. Electronic Materials Letters, 2009, 38(6):815-827.
[23] HUANG H L, BUF R. Correlations between the inhibition performances and the inhibitor structures of some azoles on the galvanic corrosion of copper coupled with silver in artificial seawater[J]. Corrosion Science, 2020, 165:108413:1-17.
[24] BUF R, LI J N, HUANGH L. Effects of electrolyte thickness, chloride ion concentration, and an external direct current electric field on corrosion behaviour of silver under a thin electrolyte layer[J]. Corrosion Engineering, Science and Technology, 2018, 54(2):1743-2782.
[25] HUANGH L, BUF R. The influence of different locations on copper corrosion with different external electric fields under a chloride-containing thin electrolyte layer[J]. Corrosion Engineering, Science and Technology, 2019, 54(3):257-265.
[26] WANG Z Z, LI Y Y,ZHANG G A. Inhibitive effects of inhibitors on the galvanic corrosion between N80 carbon steel and 13Cr stainless steel under dynamic supercritical CO2 conditions[J]. Corrosion Science, 2019, 146:121-133.
[27] WEN L, JIN Y, CHENG J, et al. Galvanic corrosion behaviour of zinc/steel couple under thin electrolyte layer[J]. Journal of Electrochemical Society, 2014, 58(29):13-24.
[28] HUANG H L, PAN Z Q, GUO X P, et al. Effect of an alternating electric field on the atmospheric corrosion behaviour of copper under a thin electrolyte layer[J]. Corrosion Science, 2013, 75:100-105.
[29] FANG D J, MAO X H, ZHANG Y M, et al. Prepara-tion of non-chromium polymer films on zinc for corrosion protection due to a compound effect between silane and cerium salt[J]. Anti-Corrosion Methods and Materials, 2009, 56(4):226-231.
[30] Nú?EZL, REGUERAE,CORVO F, et al. Corrosion of copper in seawater and its aerosols in a tropical island[J]. Corrosion Science, 2005, 47(2):461-484.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2021-12-02
基金项目:国家自然科学基金 (51401151);湖北省自然科学基金 (2018CFB525);武汉工程大学研究生教育创新基金 (CX2020263)
作者简介:吴凤麒,硕士研究生。E-mail: 452553358@qq.com
*通讯作者:黄华良,博士,教授。E-mail: 51032265@qq.com
引文格式:吴凤麒,祁康,黄华良. 薄层液膜下外加直流电场对Cu/Ag电偶腐蚀行为的影响[J]. 武汉工程大学学报,2022,44(3):266-273.

更新日期/Last Update: 2022-06-29