|本期目录/Table of Contents|

[1]刘杰泉,吴丽琼,郭园萍,等.铜尾矿中残留硫酸根的吸附和脱附特性研究[J].武汉工程大学学报,2022,44(01):69-75.[doi:10.19843/j.cnki.CN42-1779/TQ.202108002]
 LIU Jiequan,WU Liqiong,GUO Yuanping,et al.Adsorption and Desorption Performances of Sulfate in Copper Tailings[J].Journal of Wuhan Institute of Technology,2022,44(01):69-75.[doi:10.19843/j.cnki.CN42-1779/TQ.202108002]
点击复制

铜尾矿中残留硫酸根的吸附和脱附特性研究(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
44
期数:
2022年01期
页码:
69-75
栏目:
生物与环境工程
出版日期:
2022-02-28

文章信息/Info

Title:
Adsorption and Desorption Performances of Sulfate in Copper Tailings
文章编号:
1674 - 2869(2022)01 - 0069 - 07
作者:
刘杰泉吴丽琼郭园萍余军霞*池汝安
武汉工程大学化学与环境工程学院,湖北 武汉 430205
Author(s):
LIU JiequanWU LiqiongGUO YuanpingYU Junxia*CHI Ru’an
School of Chemistry and Environmental Engineering,Wuhan Institute of Technology, Wuhan 430205,China
关键词:
铜尾矿脉石矿物金属矿物 洗脱
Keywords:
copper tailings gangue minerals metal minerals elution
分类号:
X75
DOI:
10.19843/j.cnki.CN42-1779/TQ.202108002
文献标志码:
A
摘要:
为了消除铜尾矿中残留SO42-所导致的环境污染问题,研究了铜尾矿及其主要脉石矿物(石英、明矾石、高岭土)和金属矿物(黄铁矿)对浸矿剂中SO42-的吸附和脱附释放行为,并采用离子色谱法对SO42-进行测定。结果表明:石英和高岭土对SO42-不吸附也不释放,明矾石和黄铁矿因其结构特性是铜矿中SO42-的主要释放源。等温实验结果表明:明矾石、黄铁矿、铜矿、尾矿对SO42-最大释放量分别为29.9、6.30、2.57和3.09 mg/g,并且释放过程可在20 min内完成,酸度对SO42-释放量影响较小。实际尾矿的动态洗脱实验结果表明:去离子水对残留在尾矿表面的SO42-洗脱量为4.29 mg/g,洗脱率高达99%。本研究的实验结果可为解决矿体中残留SO42-所导致的环境问题提供一定的数据支撑和理论依据。
Abstract:
To eliminate the environmental pollution caused by residual SO42- in leaching agent of copper tailings, the adsorption and desorption performances of SO42- from copper tailings over gangue minerals (quartz, alunite, kaolinite) and metal minerals (pyrite) were investigated, in which the concentration of sulfate was determined by ion chromatography. Results showed that quartz and kaolinite do not adsorb or release SO42-, while alunite and pyrite are the main release sources of SO42- in copper mine due to their structural characteristics. The isotherm experiment showed that the maximum release amounts of sulfate from alunite, pyrite, copper mine and copper tailings are 29.9, 6.30, 2.57 and 3.09 mg/g, respectively, and the release process finishes within 20 minutes. The pH conditions just slightly impact the release amounts of the SO42-. The dynamic elution results of actual tailings exhibited that, the elution amount of sulfate remained on the surface of copper tailings leached by distilled water reaches 4.29 mg/g, with a high elution ratio of 99%. The results in this work provide some data support and theoretical basis for solving the environmental problems caused by residual SO42- in copper ore.

参考文献/References:

[1] 黄玉锦,阮诗昆. 基于XRF的紫金山铜矿床硫地质特征[J]. 地质学刊,2018,42(3):440-445. [2] 阮诗昆. 福建紫金山铜矿床深部铜硫矿物空间分布特征[J]. 有色金属(矿山部分),2018,70(6):54-62. [3] 李小燕,张卫民,谷士飞. 微生物浸出技术在处理低品位原生硫化铜矿中的应用及研究进展[J]. 湿法冶金,2006(2): 61-64. [4] 阮诗昆,张定才,龚建生. 紫金山金矿露采铜矿石赋存形态及成因初探[J]. 资源环境与工程,2009,23(2):100-103. [5] 崔晓琳. 紫金山高硫型金铜矿的矿床地质研究进展[J]. 矿物学报, 2015,35(2):167-177. [6] 范道焱. 硫化铜矿生物堆浸过程中的覆堆技术研究[J]. 有色金属(冶炼部分),2019(5):1-6. [7] GRELISH G J, FITZPATRICK R W, SHAND P.Regional distribution trends and properties of acid sulfate soils during severe drought in wetlands along the lower River Murray:South Australia,supporting hazard assessment[J]. Geoderma Regional,2014(2/3):60-71. [8] SHAND P, GOTCH T, LOVE A, et al.Extreme environments in the critical zone:linking acidification hazard of acid sulfate soils in mound spring discharge zones to groundwater evolution and mantle degassing[J]. Science of the Total Environment,2016,568:1238-1252. [9] VITHANA C L, ULAPANE P A K,CHANDRAJITH R,et al.Acid sulfate soils on the west coast of Sri Lanka:a review[J]. Geoderma Regional,2021,25:34-43. [10] MAMELKINA M A, COTILLAS S, LACASA E,et al.Removal of sulfate from mining waters by electrocoagulation[J]. Separation and Purification Technology,2017,182:87-93. [11] COSTA J M,RODRIGUEZ R P,SANCIENETTI G P.Removal sulfate and metals Fe+2 , Cu+2 ,and Zn+2 from acid mine drainage in an anaerobic sequential batch reactor[J]. Journal of Environmental Chemical Engineering,2017,5(2):1985-1989. [12] NTULI F, MAGWA N P.Sulphate removal from acid rock drainage using steel slag[J]. IOP Conference Series:Earth and Environmental Science,2018,191:146-158. [13] 石天宇,张覃. 晶体结构和表面性质对石英浮选行为影响研究[J]. 矿物学报, 2017, 37(3):333-341. [14] ARMAND P, CLEMENT S,BALISKY D, et al.Large SiO2-substituted GeO2 single-crystals with the α-quartz structure[J]. Journal of Crystal Growth,2011,316(1):153-157. [15] XI Z,TANG S H,LI J,et al.Pore characterization and the controls of organic matter and quartz on pore structure:case study of the Niutitang Formation of northern Guizhou Province,South China[J]. Journal of Natural Gas Science and Engineering,2019,61:18-31. [16] NONEMAN H F,MEGHAN E,HOLLINGSWORTH,et al.A high sensitivity variable temperature infrared spectroscopy investigation of kaolinite structure changes[J]. Spectrochimiac Acta Part A Molecular Biomolecular Spectroscopy,2021,247:113-119. [17] YU Y,YANG M N,YAN Z L,et al.Regulation of hierarchically porous structures based on multi-scale nanosheets derived from kaolinite for enhanced adsorption[J]. Applied Clay Science,2021,200:105895:1-10. [18] 蒋文瑞,涂志红,周姝,等. 黄铁矿表面氧化机理及动力学影响因素研究进展[J]. 金属矿山,2021(3):88-102. [19] XU S H, ZANIN M, SKINNER W, et al.Surface chemistry of oxidised pyrite during grinding:ToF-SIMS and XPS surface analysis[J]. Minerals Engineering,2021,170:68-79. [20] ACERO P, HUDSON-EDWARDS K A,GALE J D.Influence of pH and temperature on alunite dissolution:rates,products and insights on mechanisms from atomistic simulation[J]. Chemical Geology,2015,419:1-9. [21] MILLER J L, ELWOOD M A S, PHILLIPS-LANDER C M,et al.Alunite dissolution rates:dissolution mechanisms and implications for Mars[J]. Geochimica et Cosmochimica Acta,2016,172:93-106.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2021-08-10基金项目:国家重点研发计划项目(2018YFC1801801);武汉工程大学研究生教育创新基金(CX2019186)作者简介:刘杰泉,硕士研究生。E-mail:812340208@qq.com*通讯作者:余军霞,博士,教授。E-mail:yujunxia_1979@163.com引文格式:刘杰泉,吴丽琼,郭园萍,等. 铜尾矿中残留硫酸根的吸附和脱附特性研究[J]. 武汉工程大学学报,2022,44(1):69-75.
更新日期/Last Update: 2022-03-01