|本期目录/Table of Contents|

[1]张珈瑜,杨诗林,崔崇威,等.电化学消毒技术研究进展[J].武汉工程大学学报,2021,43(05):473-480.[doi:10.19843/j.cnki.CN42-1779/TQ. 202104019]
 ZHANG Jiayu,YANG Shilin,CUI Chongwei,et al.Research Progress in Electrochemical Disinfection Process[J].Journal of Wuhan Institute of Technology,2021,43(05):473-480.[doi:10.19843/j.cnki.CN42-1779/TQ. 202104019]
点击复制

电化学消毒技术研究进展(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
43
期数:
2021年05期
页码:
473-480
栏目:
化学与化学工程
出版日期:
2021-10-31

文章信息/Info

Title:
Research Progress in Electrochemical Disinfection Process
文章编号:
1674 - 2869(2021)05 - 0473 - 08
作者:
张珈瑜杨诗林崔崇威邱 珊*邓凤霞*
哈尔滨工业大学环境学院, 城市水资源与水环境国家重点实验室,黑龙江 哈尔滨 150090
Author(s):
ZHANG Jiayu YANG Shilin CUI Chongwei QIU Shan* DENG Fengxia*
School of Environment, State Key Laboratory of Urban Water Resource and Environment,Harbin Institute of Technology, Harbin 150090,China
关键词:
电化学消毒电絮凝电穿孔电氧化
Keywords:
electrochemical disinfection electroflocculation electroporation electrooxidation
分类号:
X1
DOI:
10.19843/j.cnki.CN42-1779/TQ. 202104019
文献标志码:
A
摘要:
在众多消毒技术中,电化学消毒技术因其具有易操作、自动化程度高及无需化学试剂添加等优势而凸显。系统综述了电化学消毒的3种基本原理,包括电絮凝消毒、电物理场直接消毒和电化学间接消毒。其中电化学间接消毒涉及电生活性氯、H2O2及其诱发的单线态氧1O2、阳极电生.OH、O3等。同时,讨论了3种电化学消毒原理的应用范围和各自的特点。在各种电化学消毒技术中,基于电物理场的局域强电场消毒技术和电生H2O2消毒技术,因无消毒副产物产生而具有广阔市场前景。本综述为深入了解电化学消毒技术机理,明晰其在水处理和公共环境卫生消毒领域的应用,提供了一定理论基础。
Abstract:
Among various disinfection technologies, electrochemical disinfection has attracted considerable attention because of its easy operation, high degree of automation, and no external chemical reagent addition. This review systematically summarizes three basic principles of electrochemical disinfection, including electroflocculation disinfection, electrophysical field direct disinfection and electrochemical indirect disinfection. Among them, electrochemical indirect disinfection involves electroactive chlorine, H2O2 and the induced singlet oxygen 1O2, anode electrogenerated .OH, O3, etc. In addition, this article discusses the application scope and respective characteristics of the three electrochemical disinfection principles. Among various electrochemical disinfection technologies, the local strong electric field disinfection technology based on the electric physical field and the electro-generated H2O2 disinfection technology are promising due to the absence of disinfection by-products. This review provides a theoretical basis for understanding the mechanism of electrochemical disinfection and clarifying its application in the field of water treatment and public environmental sanitation and disinfection.

参考文献/References:

[1] 郭芳. 国内外饮用水消毒技术应用与优化研究进展[J]. 人人健康, 2020, 519(10):304-304.[2] XU P, JANEX M L, SAVOYE P, et al. Wastewater disinfection by ozone: main parameters for process design [J]. Water Research, 2002, 36(4):1043-1055.[3] GONZáLEZ N, REYES-PEREZ H, BARRERA-DíAZ C E. Recent advances in water and wastewater electrodisinfection[J]. ChemElectroChem, 2019, 6(7):1978-1983.[4] ROA-MORALES G, CAMPOS-MEDINA E, AGUILERA-COTERO J, et al. Aluminum electrocoagulation with peroxide applied to wastewater from pasta and cookie processing[J]. Separation Purification Technology, 2007, 54(1):124-129.[5] NIVEN C,PARKER C,WOLTER S,et al. Deactivation of Ascaris suum eggs using electroporation and sequential inactivation with chemical disinfection[J]. Journal of Water, Sanitation Hygiene for Development, 2020, 10(3):1-11.[6] RAHMANI A R, SAMARGHANDI M R, NEMATOLLAHI D, et al. A comprehensive study of electrochemical disinfection of water using direct and indirect oxidation processes[J]. Journal of Environmental Chemical Engineering,2019,7(1):102785-102792.[7] BAYER R. Disinfection of the vagina and cervix uteri in cancer prevention with ambulant electrocoagulation. Technic, indications and results[J]. Geburtshilfe Frauenheilkd, 1962, 22:1083-1088.[8] MIKKO V,MIKA S. Advanced Water Treatment[M]. London:Elseoier,2020:1-78.[9] 高晓连. 正弦交流电絮凝处理含Cr(Ⅵ)废水的研究[J]. 中国设备工程, 2020(16):200-202.[10] VASUDEVAN S, LAKSHMI J, SOZHAN G. Effects of alternating and direct current in electrocoagulation process on the removal of cadmium from water[J]. Journal of Hazardous Materials,2011,192(1):26-34.[11] 王厦. 交变脉冲电源下的电絮凝研究[J]. 当代化工研究, 2021(3):153-154.[12] KOTNIK T, BOBANOVI? F, MIKLAV?I? D. Sensitivity of transmembrane voltage induced by applied electric fields-A theoretical analysis[J]. Bioelectrochemistry, 1997, 43(2):285-291.[13] WANG T, CHEN H, YUA C, et al. Rapid determination of the electroporation threshold for bacteria inactivation using a lab-on-a-chip platform[J]. Environment International, 2019, 132:105040-105046.[14] ZHOU J F, WANG T, CHEN W, et al. Emerging investigator series: locally enhanced electric field treatment (LEEFT) with nanowire-modified electrodes for water disinfection in pipes[J]. Environmental Science: Nano,2020,7(2):397-403.[15] ZHOU J F, WANG T, YU C, et al. Locally enhanced electric field treatment (LEEFT) for water disinfection[J]. Frontiers of Environmental Science Engineering, 2020, 14(5):78-88.[16] HUO Z Y, XIE X, YU T, et al. Nanowire-modified three-dimensional electrode enabling low-voltage electroporation for water disinfection[J]. Environmental Science Technology, 2016, 50(14):7641-7649.[17] HUO Z Y, LIU H, WANG W L, et al. Low-voltage alternating current powered polydopamine-protected copper phosphide nanowire for electroporation-disinfection in water[J]. Journal of Materials Chemistry A, 2019, 7(13):7347-7354.[18] HUO Z Y, ZHOU J F, WU Y, et al. A Cu3P nanowire enabling high-efficiency, reliable, and energy-efficient low-voltage electroporation-inactivation of pathogens in water[J]. Journal of Materials Chemistry A, 2018, 6(39):1-25.[19] ZHOU J F, YU C, WANG T, et al. Development of nanowire-modified electrodes applied in the locally enhanced electric field treatment (LEEFT) for water disinfection[J]. Journal of Materials Chemistry A, 2020, 8:12262-12277.[20] BAHCELIOGLU E, DOGANAY D, COSKUN S, et al. A point-of-use (POU) water disinfection: silver nanowire decorated glass fiber filters[J]. Journal of Water Process Engineering, 2020, 38:1-11.[21] ZHOU J F, YANG F, HUANG Y X, et al. Smartphone-powered efficient water disinfection at the point of use[J]. NPJ Clean Water, 2020, 3(1):1-9.[22] HUSSAIN S N, ASGHAR H M A, SATTAR H, et al. Free chlorine formation during electrochemical regeneration of a graphite intercalation compound adsorbent used for wastewater treatment[J]. Journal of Applied Electrochemistry, 2015, 45(6):611-621.[23] 赵旭, 冒冉, 李昂臻, 等. 电解法用于消毒的原理,技术特点与主要应用方式:电产次氯酸钠及电化学消毒[J]. 环境工程学报, 2020, 14(7):1728-1734.[24] BATES R C, SHAFFER P, SUTHERLAND S M. Development of poliovirus having increased resistance to chlorine inactivation[J]. Applied Environmental Microbiology, 1977, 34(6):849-853.[25] CHOW A T, O’GEEN A T, DAHLGREN R A, et al. Reactivity of litter leachates from California oak woodlands in the formation of disinfection by-products[J]. Journal of Environmental Quality, 2011, 40(5):1607-1616.[26] WILLIAMS C J, CONRAD D, KOTHAWALA D N, et al. Selective removal of dissolved organic matter affects the production and speciation of disinfection byproducts[J]. Science of the Total Environment, 2019, 652:75-84.[27] ZHANG Q Z, ZHOU M H, REN G B, et al. Highly efficient electrosynthesis of hydrogen peroxide on a superhydrophobic three-phase interface by natural air diffusion[J]. Nature Communications, 2020, 11(1):1-11.[28] SU P, ZHOU M H, LU X Y, et al. Electrochemical catalytic mechanism of N-doped graphene for enhanced H2O2 yield and in-situ degradation of organic pollutant[J]. Applied Catalysis B: Environmental, 2019, 245:583-595.[29] KIM H W, ROSS M B, KORNIENKO N, et al. Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts[J]. Nature Catalysis, 2018, 1(4):1-9.[30] 邱珊, 曹玉林, 俞涤非, 等. 电-Fenton技术中H2O2积累强化的研究现状及展望. 环境科学学报[J]. 2020, 40(10):3506-3525.[31] DENG F X, LI S X, ZHOU M H, et al. A biochar modified nickel-foam cathode with iron-foam catalyst in electro-Fenton for sulfamerazine degradation[J]. Applied Catalysis B: Environmental, 2019, 256:117796-117810.[32] WILSON N M, FLAHERTY D W. Mechanism for the direct synthesis of H2O2 on Pd clusters: heterolytic reaction pathways at the liquid-solid interface[J]. Journal of the American Chemical Society, 2016, 138(2):574-586.[33] ZHAO Q, LI N, LIAO C M, et al. The UV/H2O2 process based on H2O2 in-situ generation for water disinfection[J]. Journal of Hazardous Materials Letters, 2021(2):1-6.[34] ARMSTRONG D A, BUCHANAN J D. Reactions of O-2, H2O2 and other oxidants with sulfhydryl enzymes[J]. Photochemistry & Photobiology, 1978, 28(4/5):743-754.[35] CABISCOL E, TAMARIT J, ROS J. Oxidative stress in bacteria and protein damage by reactive oxygen species[J]. International Microbiology, 2000, 3(1):3-8.[36] BAI M, ZHANG Z T, XUE X H, et al. Killing effects of hydroxyl radical on algae and bacteria in ship’s ballast water and on their cell morphology[J]. Plasma Chemistry Plasma Processing, 2010, 30(6):831-840.[37] DENG F X, OLVERA-VARGAS H, GARCIA-RODRIGUEZ O, et al. Waste-wood-derived biochar cathode and its application in electro-Fenton for sulfathiazole treatment at alkaline pH with pyrophosphate electrolyte[J]. Journal of Hazardous Materials, 2019, 377:249-258.[38] DENG F X, OLVERA-VARGAS H, GARCIA-RODRIGUEZ O, et al. Unconventional electro-Fenton process operating at a wide pH range with Ni foam cathode and tripolyphosphate electrolyte[J]. Journal of Hazardous Materials, 2020, 396:1-11.[39] ZHU Y S, DENG F X, QIU S, et al. Enhanced electro-Fenton degradation of sulfonamides using the N, S co-doped cathode: mechanism for H2O2 formation and pollutants decay[J]. Journal of Hazardous Materials, 2020, 403:123950-123960.[40] CHEN L, PINTO A, ALSHAWABKEH A N. Activated carbon as a cathode for water disinfection through the electro-Fenton process[J]. Catalysts, 2019, 9(7):601-617.[41] LIU C, KONG D S, HSU P C, et al. Rapid water disinfection using vertically aligned MoS2 nanofilms and visible light[J]. Nature Nanotechnology, 2016, 11(12):1098-1104.[42] MCGUIGAN K G, CONROY R M, MOSLER H J, et al. Solar water disinfection (SODIS): a review from bench-top to roof-top[J]. Journal of Hazardous Materials, 2012, 235(15):29-46.[43] RYBERG E C, CHU C, KIM J H. Edible dye-enhanced solar disinfection with safety indication[J]. Environmental Science Technology, 2018, 52(22):1-9.[44] AMIN M T, HAN M Y. Improvement of solar based rainwater disinfection by using lemon and vinegar as catalysts[J]. Desalination, 2011, 276(1):416-424.[45] JONES C W, CLARK J H. Applications of hydrogen peroxide and derivatives[M]. London: Royal Society of Chemistry, 1999.[46] MIKLOS D B, REMY C, JEKEL M, et al. Evaluation of advanced oxidation processes for water and wastewater treatment -a critical review [J]. Water Research, 2018, 139:118-131.[47] RODRíGUEZ-PE?A M, PéREZ J A B, LLANOS J, et al. New insights about the electrochemical production of ozone[J]. Current Opinion in Electrochemistry, 2021, 27:1-10.[48] WANG J L, CHEN H. Catalytic ozonation for water and wastewater treatment: recent advances and perspective[J]. Science of the Total Environment, 2020, 704:1-17.[49] DING W Q, JIN W B, CAO S , et al. Ozone disinfection of chlorine-resistant bacteria in drinking water [J]. Water Research, 2019, 160:339-349.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2021-04-14基金项目:国家自然科学基金(52070056,52000052);城市水资源与水环境国家重点实验室(哈尔滨工业大学)课题(2021TS26)作者简介:张珈瑜,博士研究生。E-mai:zhangzhangjyy@163.com*通讯作者:邱 珊,博士,副教授,博士研究生导师。E-mail:qiushan@hit.edu.cn 邓凤霞,博士,助理教授。 E-mail:dengfx@hit.edu.cn 引文格式:张珈瑜,杨诗林,崔崇威,等. 电化学消毒技术研究进展[J]. 武汉工程大学学报,2021,43(5):473-480,495.
更新日期/Last Update: 2021-10-27