|本期目录/Table of Contents|

[1]刘 璨,吴小玲,柯 雪,等.LCST型智能聚合物及其在生物医学领域的研究进展[J].武汉工程大学学报,2021,43(01):50-58,64.[doi:10.19843/j.cnki.CN42-1779/TQ.202007004]
 LIU Can,WU Xiaoling,KE Xue,et al.Progress in LCST Smart Polymers and Their Applications in Biomedical Field[J].Journal of Wuhan Institute of Technology,2021,43(01):50-58,64.[doi:10.19843/j.cnki.CN42-1779/TQ.202007004]
点击复制

LCST型智能聚合物及其在生物医学领域的研究进展(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
43
期数:
2021年01期
页码:
50-58,64
栏目:
材料科学与工程
出版日期:
2021-02-28

文章信息/Info

Title:
Progress in LCST Smart Polymers and Their Applications in Biomedical Field
文章编号:
1674 - 2869(2021)01 - 0050 - 09
作者:
刘 璨吴小玲柯 雪曾小平王大威吴江渝*
武汉工程大学材料科学与工程学院,湖北 武汉 430205
Author(s):
LIU CanWU XiaolingKE XueZENG XiaopingWANG DaweiWU Jiangyu*
School of Materials Science and Engineering,Wuhan Institute of Technology,Wuhan 430205,China
关键词:
刺激响应聚合物低临界溶解温度温敏机理生物相容性
Keywords:
stimuli-responsive polymerlow critical solution temperature(LCST)temperature-sensitive mechanismbiocompatibility
分类号:
TQ31
DOI:
10.19843/j.cnki.CN42-1779/TQ.202007004
文献标志码:
A
摘要:
低临界溶解温度(LCST)型聚合物因其独特的温度响应特性而在众多领域具有广泛的应用,其响应温度与聚合物结构密切相关。通过分子设计和改造,可以将LCST型聚合物的响应温度调节至生理温度附近,从而使其应用于生物医学领域。从热力学角度解释了LCST型聚合物的温敏机理。介绍了聚丙烯酰胺类、聚乙烯基酰胺类、聚醚类、聚甲基丙烯酸酯类和聚噁唑啉类LCST型聚合物,及其在药物输送、基因治疗和组织工程等生物医学领域的研究进展。大多数LCST型聚合物存在功能较为单一、难以生物降解等问题。因此,开发具有多重响应性和生物降解性的LCST型聚合物是未来的重要发展方向。
Abstract:
Low critical solution temperature (LCST) polymers are widely used in various fields due to their unique temperature-responsive properties,which are closely related to the polymer structure. Through molecular design and modification,the response temperature of LCST polymers can be adjusted to around physiological temperature for potential biomedical applications. In the present work,the temperature-responsive mechanism of LCST polymers is thermodynamically interpreted. The types of LCST polymers (polyacrylamides,polyvinylamides,polyethers,polymethacrylates,and polyoxazolines),and their applications in biomedical fields such as drug delivery,gene therapy and tissue engineering are presented. Most LCST polymers have the disadvantages of single responsiveness and poor biodegradability. Therefore,the development of chemical structures with multi-responsive property and/or biodegradable property is an important future direction for LCST polymers.

参考文献/References:

[1] HOFFMAN A S. Stimuli-responsive polymers:biomedical applications and challenges for clinical translation [J]. Advanced Drug Delivery Reviews,2013,65(1):10-16.[2] BAJPAI A K,BAJPAI J, SAINI R, et al. Responsive polymers in biology and technology [J]. Polymer Reviews,2011,51(1):53-97.[3] BORDAT A,BOISSENOT T,NICOLAS J,et al. Thermoresponsive polymer nanocarriers for biomedical applications [J]. Advanced Drug Delivery Reviews,2019,138:167-192.[4] STUART M A C, HUCK W T S, GENZER J, et al. Emerging applications of stimuli-responsive polymer materials [J]. Nature Materials,2010,9(2):101-113.[5] ANDERSON C R,GAMBINOSSI F,DILILLO K M,et al. Tuning reversible cell adhesion to methacrylate-based thermoresponsive polymers:effects of composition on substrate hydrophobicity and cellular responses [J]. Journal of Biomedical Materials Research: Part A,2017,105(9):2416-2428.[6] MELLATI A,KIAMAHALLEH M V,MADANI S H,et al. Poly(N-isopropylacrylamide) hydrogel/chitosan scaffold hybrid for three-dimensional stem cell culture and cartilage tissue engineering [J]. Journal of Biomedical Materials Research: Part A,2016,104(11):2764-2774.[7] ZHANG K, YANG J L, SNU Y L,et al. Thermo- sensitive dual-functional nanospheres with enhanced lubrication and drug delivery for the treatment of osteoarthritis [J]. Chemistry:A European Journal,2020,26(46):10564-10574.[8] KWAK J G,LEE J. Thermoresponsive inverted colloidal crystal hydrogel scaffolds for lymphoid tissue engineering [J]. Advanced Healthcare Materials,2020,9(6):1901556:1-9.[9] SOUTHALL N T,DILL K A, Haymet A D J. A view of the hydrophobic effect [J]. Journal of Physical Chemistry B,2002,106(3):521-533.[10] HOOGENBOOM R. Temperature-responsive polymers: properties,synthesis and applications[M]//AGUILAR M R,SAN ROMáN J. Smart Polymers and their Applications. Cambridge,UK:Woodhead Publishing,2019:13-44.[11] HABA Y, KOJIMA C, HARADA A, et al. Comp-arison of thermosensitive properties of poly(amidoamine) dendrimers with peripheral N-isopropylamide groups and linear polymers with the same groups [J]. Angewandte Chemie-International Edition in English,2007,46(1/2):234-237.[12] LI P, ZHU A M, LIU Q L, et al. Fe3O4/poly(N-isopropylacrylamide)/chitosan composite micro-spheres with multiresponsive properties [J]. Industrial & Engineering Chemistry Research,2008,47(20):7700-7706.[13] KLOUDA L, MIKOS A G. Thermoresponsive hydrogels in biomedical applications [J]. European Journal of Pharmaceutics and Biopharmaceutics,2008,68(1):34-45.[14] LUTZ J F. Polymerization of oligo(ethylene glycol) (meth)acrylates:toward new generations of smart biocompatible materials [J]. Journal of Polymer Science Part A-Polymer Chemistry,2008,46(11):3459-3470.[15] 朱梦祥. 含OEG侧基的聚多肽的制备及其在醇中的温敏性质研究[D].湘潭:湘潭大学,2017.[16] HESKINS M, GUILLET J E. Solution properties of poly(N-isopropylacrylamide)[J]. Journal of Macromolecular Science:Part A-Chemistry,1968,2(8):1441-1455.[17] LEROUX J C, ROUX E, LE GARREC D, et al. N-isopropylacrylamide copolymers for the preparation of pH-sensitive liposomes and polymeric micelles [J]. Journal of Controlled Release:Official Journal of the Controlled Release Society,2001,72(1/2/3):71-84.[18] 黎亚丽,王潮霞. AM/NIPAM对P(NIPAM-co-AM)温敏凝胶性能的影响[J]. 精细化工,2013,30(3):259-263.[19] STANESCU P O, RADU I C, DRAGHICI C, et al. Controlling the thermal response of poly(N-isopropylacrylamide)-poly(ethylene glycol)-poly(N-isopropylacrylamide) triblock copolymers in aqueous solution by means of additives [J]. Reactive and Functional Polymers,2020,152:104610:1-9.[20] WANG X F,LI S G,WAN Z W,et al. Investigation of thermo-sensitive amphiphilic micelles as drug carriers for chemotherapy in cholangiocarcinoma in vitro and in vivo[J]. International Journal of Pharmaceutics,2014,463(1):81-88.[21] AMGOTH C, JOSHI S. Thermosensitive block copolymer (PNIPAM)-b-(Glycine) thin film as protective layer for drug loaded mesoporous silica nanoparticles [J]. Materials Research Express,2017,4(10):105306:1-10.[22] CHEN Y,GAO Y T,DA SILVA L P,et al. A thermo-/pH-responsive hydrogel (PNIPAM-PDMA-PAA) with diverse nanostructures and gel behaviors as a general drug carrier for drug release [J]. Polymer Chemistry,2018,9(29):4063-4072.[23] TAGER A A, SAFRONOV A P, BEREZYUK E A. Lower critical solution temperature and hydrophobic hydration in aqueous polymer solutions [J]. Colloid and Polymer Science,1994,272(10):1234-1239.[24] RAMOS J, IMAZ A, FORCADA J. Temperature- sensitive nanogels:poly(N-vinylcaprolactam) versus poly(N-isopropylacrylamide)[J].Polymer Chemistry,2012,3(4):852-856.[25] MAEDA Y, NAKAMURA T, IKEDA I. Hydration and phase behavior of poly(N-vinylcaprolactam) and poly(N-vinylpyrrolidone) in water [J]. Macromolecules,2002,35(1):217-222.[26] 危俊吾,李杰,钱杨杨,等. 聚N-乙烯基己内酰胺的合成及温度响应性能研究[J]. 化学世界,2019,60(10):684-689.[27] ALEXANDRIDIS P,HATTON T A. Poly(ethylene oxide)-poly(propylene oxide )-poly (ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces:thermodynamics,structure,dynamics,and modeling[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,1995,96(1):1-46.[28] ALARCON C D L H,PENNADAM S,ALEXANDER C. Stimuli responsive polymers for biomedical applications [J]. Chemical Society Reviews,2005,34(3):276-285.[29] SCHMOLKA I R. Artificial skin. I. Preparation and properties of pluronic F-127 gels for treatment of burns [J]. Journal of Biomedical Materials Research,1972,6(6):571-582.[30] LI P H,ZHANG C L,LI R,et al. Multiple physically cross-linked F127-α-CD hydrogels: preparation,sol-gel transformation,and controlled release of 5-fluorouracil [J]. ACS Applied Bio Materials,2019,2(1):527-532.[31] WEBER C, HOOGENBOOM R, SCHUBERT U S. Temperature responsive bio-compatible polymers based on poly(ethylene oxide) and poly(2-oxazoline)s [J]. Progress in Polymer Science,2012,37(5):686-714.[32] HAN S,HAGIWARA M,ISHIZONE T. Synthesis of thermally sensitive water-soluble polymethacrylates by living anionic polymerizations of oligo(ethylene glycol) methyl ether methacrylates[J]. Macromole-cules,2003,36(22):8312-8319.[33] LUTZ J F, ANDRIEU J, üZGüN S, et al. Biocompatible,thermoresponsive,and biodegradable:simple preparation of “all-in-one” biorelevant polymers [J]. Macromolecules,2007,40(24):8540-8543.[34] ISHIZONE T, SEKI A, HAGIWARA M, et al. Anionic polymerizations of oligo(ethylene glycol) alkyl ether methacrylates: effect of side chain length and ω-alkyl group of side chain on cloud point in water [J]. Macromolecules,2008,41(8):2963-2967.[35] SUN S T, WU P Y. On the thermally reversible dynamic hydration behavior of oligo(ethylene glycol) methacrylate-based polymers in water[J]. Macromolecules,2013,46(1):236-246.[36] IEONG N S, HASAN M, PHILLIPS D J, et al. Polymers with molecular weight dependent LCSTs are essential for cooperative behaviour [J]. Polymer Chemistry,2012,3(3):794-799.[37] ADAMS N,SCHUBERT U S. Poly(2-oxazolines) in biological and biomedical application contexts [J]. Advanced Drug Delivery Reviews,2007,59(15):1504-1520.[38] PARK J S, KATAOKA K. Comprehensive and accurate control of thermosensitivity of poly(2-alkyl-2-oxazoline)s via well-defined gradient or random copolymerization [J]. Macromolecules,2007,40(10):3599-3609.[39] DE LA ROSA V R. Poly(2-oxazoline)s as materials for biomedical applications [J]. Journal of Materials Science:Materials in Medicine,2014,25(5):1211-1225.[40] PARK J S, AKIYAMA Y, WINNIK F M, et al. Versatile synthesis of end-functionalized thermosensitive poly(2-isopropyl-2-oxazolines) [J]. Macromolecules,2004,37(18):6786-6792.[41] HUBER S, JORDAN R. Modulation of the lower critical solution temperature of 2-Alkyl-2-oxazoline copolymers [J]. Colloid and Polymer Science,2008,286(4):395-402.[42] MONNERY B D, H OOGENBOOM R. Thermo-responsive hydrogels formed by poly(2-oxazoline) triblock copolymers[J]. Polymer Chemistry,2019,10(25):3480-3487.[43] WARD M A, GEORGIOU T K. Thermoresponsive polymers for biomedical applications [J]. Polymers,2011,3(3):1215-1242.[44] JUILLERAT-JEANNERET L. The targeted delivery of cancer drugs across the blood-brain barrier:chemical modifications of drugs or drug-nanoparticles?[J]. Drug Discovery Today,2008,13(23/24):1099-1106.[45] GOODMAN T T, NG C P, PUN S H. 3-D tissue culture systems for the evaluation and optimization of nanoparticle-based drug carriers [J]. Bioconjugate Chemistry,2008,19(10):1951-1959.[46] INDULEKHA S,ARUNKUMAR P,BAHADUR D,et al. Thermoresponsive polymeric gel as an on-demand transdermal drug delivery system for pain management [J]. Materials Science & Engineering: C-Materials for Biological Applications,2016,62:113-122.[47] SU Y W,DANG J,ZHANG H T,et al. Supramolecular host-guest interaction-enhanced adjustable drug release based on β-cyclodextrin-functionalized thermoresponsive porous polymer films [J]. Langmuir,2017,33(30):7393-7402.[48] ZHANG H W, NIU Q J, WANG N, et al. Thermo-sensitive drug controlled release PLA core/PNIPAM shell fibers fabricated using a combination of electrospinning and UV photo-polymerization [J]. European Polymer Journal,2015,71:440-450.[49] 冯磊. DNA/两性表面活性剂(CnDMAO)组装体的构筑与性能研究[D].济南:山东大学,2016.[50] 吴广升,惠光艳. 非病毒基因载体的研究进展[J]. 中国疗养医学,2017,26(2):134-136.[51] WANG H B, YANG J H, LI Y M,et al. Combining magnetic field/temperature dual stimuli to significantly enhance gene transfection of nonviral vectors [J]. Journal of Materials Chemistry B,2013,1(1):43-51.[52] CHALANQUI M J,PENTLAVALLI S,MCCRUDDEN C,et al. Influence of alginate backbone on efficacy of thermo-responsive alginate-g-P (NIPAAm) hydrogel as a vehicle for sustained and controlled gene delivery [J]. Materials Science & Engineering: C-Materials for Biological Applications,2017,95:409-421.[53] FENG G J,CHEN H Y,LI J J,et al. Gene therapy for nucleus pulposus regeneration by heme oxygenase-1 plasmid DNA carried by mixed polyplex micelles with thermo-responsive heterogeneous coronas [J]. Biomaterials,2015,52:1-13.[54] PLACE E S,GEORGE J H,WILLIAMS C K,et al. Synthetic polymer scaffolds for tissue engineering [J]. Chemical Society Reviews,2009,38(4):1139-1151.[55] FRAGAL E H, FRAGAL V H, HUANG X, et al. From ionic liquid-modified cellulose nanowhiskers to highly active metal-free nanostructured carbon catalysts for the hydrazine oxidation reaction [J]. Journal of Materials Chemistry A,2017,5(3):1066-1077.[56] LIN J B,ISENBERG B C,SHEN Y K,et al. Thermo-responsive poly(N-isopropylacrylamide) grafted onto microtextured poly(dimethylsiloxane) for aligned cell sheet engineering [J]. Colloids and Surfaces B-Biointerfaces,2012,99:108-115.[57] OROOJALIAN F,JAHANAFROOZ Z,CHOGAN F,et al. Synthesis and evaluation of injectable thermosensitive penta-block copolymer hydrogel (PNIPAAm-PCL-PEG-PCL-PNIPAAm) and star-shaped poly(CL-CO-LA)-b-PEG for wound healing applications [J]. Journal of Cellular Biochemistry,2019,120(10):17194-17207.[58] FRAGAL V H,CATORI D M,FRAGAL E H,et al. Two-dimensional thermoresponsive sub-microporous substrate for accelerated cell tissue growth and facile detachment [J]. Journal of Colloid and Interface Science,2019,547:78-86.[59] GIOFFREDI E, BOFFITO M, CALZONE S, et al. Pluronic F127 hydrogel characterization and biofabrication in cellularized constructs for tissue engineering applications [J]. Procedia CIRP,2016,49:125-132.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2020-07-03基金项目:海西州科技局企业技术创新资金计划(2019-101)作者简介:刘 璨,硕士研究生。E-mail:lc354110549@gmail.com*通讯作者:吴江渝,博士,教授。E-mail:wujy@wit.edu.cn引文格式:刘璨,吴小玲,柯雪,等. LCST型智能聚合物及其在生物医学领域的研究进展[J]. 武汉工程大学学报,2021,43(1):50-58,64.
更新日期/Last Update: 2021-02-07