|本期目录/Table of Contents|

[1]何祖政,谢冰倩,刘 慧*.基于大环化合物的刺激响应组装体的研究进展[J].武汉工程大学学报,2020,42(06):597-603.[doi:10.19843/j.cnki.CN42-1779/TQ.201909026]
 HE Zuzheng,XIE Bingqian,LIU Hui *.Progress in Stimuli-Responsive Assemblies Based on Macrocyclic Compounds[J].Journal of Wuhan Institute of Technology,2020,42(06):597-603.[doi:10.19843/j.cnki.CN42-1779/TQ.201909026]
点击复制

基于大环化合物的刺激响应组装体的研究进展(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
42
期数:
2020年06期
页码:
597-603
栏目:
化学与化学工程
出版日期:
2021-01-30

文章信息/Info

Title:
Progress in Stimuli-Responsive Assemblies Based on Macrocyclic Compounds
文章编号:
1674 - 2869(2020)06 - 0597 - 07
作者:
何祖政谢冰倩刘 慧*
武汉工程大学化工与制药学院,湖北 武汉 430205
Author(s):
HE ZuzhengXIE BingqianLIU Hui *
School of Chemical Engineering and Pharmacy,Wuhan Institute of Technology,Wuhan 430205,China
关键词:
大环化合物刺激响应超分子组装体
Keywords:
macrocyclic compoundsstimuli-responsivesupramolecular assembly
分类号:
O641.3
DOI:
10.19843/j.cnki.CN42-1779/TQ.201909026
文献标志码:
A
摘要:
由可逆的非共价相互作用形成的超分子组装体引起了极大的关注。大环主体因其独特的主客体性质是构建超分子组装体的主要部分。大环化合物的多样性导致形成了极好的亲和性和选择性的超分子组装体,这些超分子组装体可以通过改变主体的空腔来调节。通过外部刺激,例如光、pH、氧化还原反应来控制组装体。通过利用主客体之间的可逆性,已经成功地制备了具有刺激响应功能的材料和传感器。冠醚的结构简单且易于官能化,环糊精和葫芦脲在水介质中显示出更高的溶解度,而柱芳烃的刚性结构则易于形成有机体。因此,有望将这些动态组装体应用于纳米技术、药物递送等领域。亚纳米级和微米级超分子组装体如胶体和囊泡将成为未来智能设备的发展趋势。
Abstract:
Supramolecular assemblies formed by reversible noncovalent interactions have attracted tremendous attentions. Macrocyclic hosts are a useful building block to construct the assembly architectures with their unique host-guest properties. A varieties of supramolecular assemblies with fascinating affinities and selectivities are formed based on the diversities of macrocyclic compounds. And these assemblies could be tuned by changing the cavity of the host. External stimuli such as photo, pH value, redox, were used for controlling these assemblies. By taking advantage of the reversibility between the host and the guest, materials and sensors have been successfully prepared with stimuli-responsive functions. The structures of crown ethers are simple and readily functionalizable. Cyclodextrins and cucurbit[n]urils exhibit higher solubility in aqueous media, and the rigid conformations of pillar[n]arenes make them easily preorganize. Therefore it is promising to apply these dynamic assemblies into the field of nanotechnology, drug delivery and so on. The subnanometer-and micrometer-scale supramolecular assemblies like colloids and vesicles would be the future trend for smart devices.

参考文献/References:

[1] WEI P F, ZHANG X P, LIU J K, et al. New wine in old bottles: prolonging room-temperature phosphorescence of crown ethers by supramolecular interactionsl[J]. Angewandte Chemie International edtion,2020,59(24):9293-9298. [2] ZHANG Y M, LIU Y H, LIU Y. Cyclodextrin-based multistimuli-responsive supramolecular assemblies and their biological functionsl[J]. Advance Science,2020,32(3):1806158. [3] COSTA A I,BARATA P D,FIALHO C B,et al. Highly sensitive and selective fluorescent probes for Cu(II) detection based on calix[4]arene-oxacyclophane architecturesl[J]. Molecules,2020,25(10):2456. [4] ZHANG Y C, XU Z Y, WANG Z K, et al. A woven supramolecular metal-organic framework comprising a ruthenium bis(terpyridine) complex and cucurbit[8]uril: enhanced catalytic activity toward alcohol oxidationl[J]. Chempluschem,2020,85(7):1498-1503. [5] ZHANG H C,LIU Z N,FU H. Pillararenes trimer for self- assemblyl [J]. Nanomaterials,2020,10(4):651. [6] LEE J W, SAMAL S, SELVAPALAM N, et al. Cucurbituril homologues and derivatives: new opportunities in supramolecular chemistryl[J]. Accounts of Chemical Research,2003,36(8):621- 630. [7] MURRAY J ,KIM K, OGOSHI T, et al. The aqueous supramolecular chemistry of cucurbit[n]urils, pillar[n]arenes and deep-cavity cavitandsl[J]. Chemical Society Reviews,2017,46(9):2479-2496. [8] LIU Z C, NALLURI S K M, STODDART J F. Surveying macrocyclic chemistry: from flexible crown ethers to rigid cyclophanesl[J]. Chemical Society Reviews,2017,46(9):2459-2478. [9] CRINI G. Review: a history of cyclodextrins[J]. Chemical Reviews,2014,114(21):10940-10975. [10] LANGTON M J, BEER P D. Rotaxane and catenane host structures for sensing charged guest species[J]. Accounts of Chemical Research,2014,47(7):1935-1949. [11] MCCONNELL A J,WOOD C S,NEELAKANDAN P P,et al. Stimuli-responsive metal-ligand assemblies[J]. Chemical Reviews,2015,115(15):7729-7793. [12] QU D H,WANG Q C,ZHANG Q W,et al. Photores- ponsive host-guest functional systems[J]. Chemical Reviews,2015,115(15):7543-7588. [13] BRUNS C J,STODDART J F. Rotaxane-based molecular muscles[J]. Accounts of Chemical Research,2014,47(7):2186-2199. [14] YAN X Z,WANG F,ZHENG B,et al. Stimuli-responsive supramolecular polymeric materials[J]. Chemical Society Reviews,2012,41(18):6042-6065. [15] CHEN Y, HUANG F, LI Z T, et al. Controllable macrocyclic supramolecular assemblies in aqueous solution[J]. Science China Chemistry,2018,61(8):979-992. [16] QI Z, SCHALLEY C A. Exploring macrocycles in functional supramolecular gels: from stimuli responsiveness to systems chemistry[J]. Accounts of Chemical Research,2014,47(7):2222-2233. [17] WILLIAMS R J, SMITH A M, COLLINS R, et al. Enzyme-assisted self-assembly under thermodynamic control [J]. Nat Nanotechnol,2009,4(1):19-24. [18] LI P Y,CHEN Y,CHEN C H,et al. Multi-charged bis(p-calixarene)/pillararene functionalized gold nanoparticles for ultra-sensitive sensing of butyrylcholinesterase[J]. Soft Matter,2019,15(41):8197-8200. [19] ZHAI L. Stimuli-responsive polymer films [J]. Chemical Society Reviews,2013,42(17):7148-7160. [20] APPEL E A, LOH X J, JONES S T,et al. Ultrahigh- water-content supramolecular hydrogels exhibiting multistimuli responsiveness[J]. Journal of the American Chemical Society,2012,134(28):11767-11773. [21] CHANG Y C,YANG K,WEI P,et al. Cationic vesicles based on amphiphilic pillar[5]arene capped with ferrocenium: a redox-responsive system for drug/siRNA co-delivery[J]. Angewandte Chemie,International Edition in English,2014,53(48):13126-13130. [22] XUE W,ZAVALIJ P Y,ISAACS L. Pillar[n]MaxQ: a new high affinity host family for sequestration in waterl[J]. Angewandte Chemie,International Edition in English,2020,59(32):13313-13319. [23] PAEK K,YANG H,LEE J,et al. Efficient colorimetric pH sensor based on responsive polymer-quantum dot integrated graphene oxide[J]. ACS Nano,2014,8(3):2848-2856. [24] NI Y X,YIN M J,DONG S Y,et al. A poly(ionic liquid)-pillar[5]arene honeycombed isoporous membrane for high performance Cu2+ sensors[J]. Applied Surface Science,2020,500:144056. [25] PEDERSEN C J. Cyclic polyethers and their complexes with metal salts[J]. Journal of the American Chemical Society,1967,89(26):7017-7036. [26] LI D D,ZHANG Q,ZHAO W X,et al. Thermo/anion dual-responsive supramolecular organoplatinum-crown ether complexl[J]. Organic Letters,2020,22(11):4289-4293. [27] ZHANG M M, YAN X Z,HUANG F H,et al. Stimuli- responsive host-Guest systems based on the recognition of cryptands by organic guests[J]. Accounts of Chemical Research,2014,47(7):1995-2005. [28] CHENG M,ZHANG J,REN X T,et al. Acid/base- controllable fluorescent molecular switches based on cryptands and basic N-heteroaromatics[J]. Chemical Communications,2017,53(86):11838-11841. [29] XING H, WANG H,YAN X Z, et al. A responsive supramolecular metallogel constructed by coordination- driven self-assembly of a crown ether-based [3]pseudorotaxane and a diplatinum(II) acceptor[J]. Dalton Trans,2015,44(25):11264-11268. [30] CHEN L,CHEN Y,FU H G,et al. Reversible emitting anti-counterfeiting ink prepared by anthraquinone- modified beta-cyclodextrin supramolecular polymerl[J]. Advance Science,2020,7(14):2000803. [31] MA X, TIAN H. Stimuli-responsive supramolecular polymers in aqueous solution[J]. Accounts of Chemical Research, 2014,47(7):1971-1981. [32] KANG Y, CAI Z, TANG X,et al. An amylase- responsive bolaform supra-amphiphile[J]. ACS Applied Materials & Interfaces,2016,8(7):4927-4933. [33] LU Y Q, ZOU H, YUAN H, et al. Triple stimuli- responsive supramolecular assemblies based on host- guest inclusion complexation between β-cyclodextrin and azobenzene[J]. European Polymer Journal,2017,91:396-407. [34] GUO D S, LIU Y. Calixarene-based supramolecular polymerization in solution[J]. Chemical Society Reviews,2012,41(18):5907-5921. [35] POCHOROVSKI I, DIEDERICH F. Development of redox-switchable resorcin[4]arene cavitands[J]. Accounts of Chemical Research,2014,47(7):2096-2105. [36] GUO D S,WANG K,WANG Y X,et al. Cholinesterase- responsive supramolecular vesicle[J]. Journal of the American Chemical Society,2012,134(24):10244- 10250. [37] WANG K P,CHEN Y,LIU Y. A polycation-induced secondary assembly of amphiphilic calixarene and its multi-stimuli responsive gelation behavior[J]. Chemical Communications,2015,51(9):1647-1649. [38] WANG J, HUANG Z Z, MA X, et al. Visible-light- excited room-temperature phosphorescence in water by cucurbit[8]uril-mediated supramolecular assemblyl[J]. Nanomaterials,2020,59(25):9928-9933. [39] BHASIKUTTAN A C,PAL H,MOHANTY J. Cucurbit[n]uril based supramolecular assemblies: tunable physico-chemical properties and their prospects[J]. Chemical Communications,2011,47(36):9959- 9971. [40] KULATHINTE MEETHAL S, SASMAL R,PAHWA M,et al. Cucurbit[7]uril-directed assembly of colloidal membrane and stimuli-responsive microcapsules at the liquid-liquid interface[J]. Langmuir,2018,34(2):693-699. [41] MONDAL J H, AHMED S, GHOSH T, et al. Reversible deformation-formation of a multistimuli responsive vesicle by a supramolecular peptide amphiphile[J]. Soft Matter,2015,11(24):4912- 4920. [42] LOU X Y, YANG Y W. Pillar[n] arene-based supramolecular switches in solution and on surfaces [J]. Applied Biochemistry and Biotechnology,2020,190:1484-1497. [43] KAKUTA T, YAMAGISHI T A,OGOSHI T. Stimuli- responsive supramolecular assemblies constructed from pillar[n]arenes[J]. Accounts of Chemical Research,2018,51(7):1656-1666. [44] BI J, ZENG X, TIAN D, et al. Temperature- responsive switch constructed from an anthracene-functionalized pillar[5]arene-based host-guest system[J]. Organic Letters,2016,18(5):1092-1095. [45] CHEN J F, CHEN P K. Pillar[5] arene-based resilient supramolecular gel with dual-stimuli responses and self-healing properties[J]. ACS Applied Polymer Materials,2019,1(8):2224-2229.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2019-09-18基金项目:武汉工程大学研究生教育创新基金(CX2019015)作者简介:何祖政,硕士研究生。E-mail:1430539206@qq.com*通讯作者:刘 慧,博士,副教授。E-mail:2806358119@qq.com引文格式:何祖政,谢冰倩,刘慧. 基于大环化合物的刺激响应组装体的研究进展 [J]. 武汉工程大学学报,2020,42(6):597-603.
更新日期/Last Update: 2020-12-16