|本期目录/Table of Contents|

[1]刘德峰,颜 肃.压力水-岩耦合作用下砂岩断口微观破坏机理[J].武汉工程大学学报,2020,42(04):439-443.[doi:10.19843/j.cnki.CN42-1779/TQ.201911020]
 LIU Defeng,YAN Su.Micro-Damage Mechanism of Sandstone Fracture Under Coupling of Hydraulic Pressure and Rock[J].Journal of Wuhan Institute of Technology,2020,42(04):439-443.[doi:10.19843/j.cnki.CN42-1779/TQ.201911020]
点击复制

压力水-岩耦合作用下砂岩断口微观破坏机理(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
42
期数:
2020年04期
页码:
439-443
栏目:
资源与环境工程
出版日期:
2021-01-28

文章信息/Info

Title:
Micro-Damage Mechanism of Sandstone Fracture Under Coupling of Hydraulic Pressure and Rock
文章编号:
1674 - 2869(2020)04 - 0439 - 05
作者:
刘德峰12颜 肃1
1. 武汉工程大学资源与安全工程学院,湖北 武汉 430074;2. 湖北省化学工业设计研究院,湖北 武汉 430070
Author(s):
LIU Defeng12YAN Su1
1. School of Resources & Safety Engineering,Wuhan Institute of Technology,Wuhan 430074, China;2. Hubei Research and Design Institute of Chemical Industry,Wuhan 430070, China
关键词:
砂岩水压蠕变断口剪切裂纹 损伤劣化机理
Keywords:
sandstone water pressure creep fracture shear crack damage and degradation mechanism
分类号:
TD853
DOI:
10.19843/j.cnki.CN42-1779/TQ.201911020
文献标志码:
A
摘要:
为了研究流固耦合作用下岩石的损伤劣化机理,以砂岩岩样为研究对象,采用流固耦合力学实验系统开展轴压水压耦合作用下单轴压缩、三轴压缩及三轴蠕变实验,借助扫描电子显微镜对岩样破裂断口的微观结构特征进行分析。结果表明:单轴饱水岩样破裂断口表面比干燥岩样出现更多的裂纹核,且断口形貌以沿晶断裂为主,穿晶断裂为辅;随着水压增大,三轴压缩岩样破裂断口表面裂纹核逐渐变少,剪切平行裂纹逐渐增多,岩样的宏观破坏形式从以张拉破坏为主逐渐向以剪切破坏为主转变;与三轴压缩岩样断口相比,三轴蠕变岩样破裂断口表面平整度和光滑度较差,晶体间联结更加紧密,剪切裂纹密度和深度增加。
Abstract:
The sandstone samples were taken as research objects to study the damage and degradation mechanism of rock under fluid-solid coupling. The fluid-solid coupling experimental system was used to perform uniaxial compression,triaxial compression and triaxial creep experiments under the coupling action of axial pressure and hydraulic pressure. The microstructure characteristics of fractured rock were analyzed by scanning electron microscopy. The results show that there are more crack cores in the fractured surface of the uniaxial saturated rock samples under uniaxial compression compared with the dry rock samples. The fractured surfaces consisted mainly of intergranular ruptures with some transgranular ruptures. With the hydraulic pressure increasing,the crack cores in the fractured surface of the rock samples decrease,and the shear parallel cracks increase gradually under triaxial compression. The macroscopic failure mode of rock samples changes from tensile failure to shear failure. Compared with the rock samples under triaxial compression,the flatness and smoothness of the fractured surface of the rock samples are poorer,the intercrystal connections are more compact and the shear crack density and depth increase under triaxial creep.

参考文献/References:

[1] 夏冬. 浸水岩石损伤演化过程试验研究及在大水矿山中的应用[D]. 沈阳:东北大学,2014. [2] 念红芬,张春华. 乌东德水电站库区板岩遇水软化微观机理及强度模型研究[J]. 三峡大学学报(自然科学版),2018,40(6):10-14. [3] 吴金刚,毛俊睿,曾珠,等. 煤矿重特大水灾事故风险耦合研究[J]. 矿业安全与环保,2019,46(5):104-108,113. [4] 李会锋. 基坑降水开挖对邻近建筑物沉降的影响分析[D]. 邯郸:河北工程大学,2015. [5] BIENIAWSKI Z T. Mechanism of brittle fracture of rock:part Ⅱ-experimental studies [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1967,4(4):407-408. [6] SPRUNT E S,BRACE W F. Direct observation of micro- cavities in crystalline rocks [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1974,11(4):139-l50. [7] 张安斌,张艳博,刘祥鑫,等. 水对泥质粉砂岩物理力学性能影响的试验研究[J]. 煤炭科学技术,2015,43(8):67-71. [8] 邓华锋,张恒宾,李建林,等. 水-岩作用对砂岩卸荷力学特性及微观结构的影响[J]. 岩土力学,2018,39(7):2344-2351. [9] 朱珍德,张勇,徐卫亚,等. 高围压高水压条件下大理岩断口微观机理分析与试验研究[J]. 岩石力学与工程学报,2005,24(1):44-51. [10] 刘长武,陆士良. 泥岩遇水崩解软化机理的研究[J]. 岩土力学,2000,21(1):28-31. [11] 周翠英,谭祥韶,邓毅梅. 特殊软岩软化的微观机制研究[J]. 岩土力学与工程学报,2005,24(3):394-400. [12] 刘兴华,郑颖人. 岩石损伤的CT实验观测[J]. 贵州工业大学学报,1997,26(增刊l):120-122. [13] 汪丽,李同录,张建杰. 地下水对板岩微观结构变化的影响研究[J]. 水力发电,2019,45(4):49-52. [14] 唐小琳,顾正洪,夏微微,等. 饱水-失水循环作用下岩石劣化特性试验研究[J]. 水资源与水工程学报,2017,28(1):208-213,219. [15] 闻名,陈震,许金余,等. 不同含水率红砂岩静动态劈拉试验及细观分析[J]. 地下空间与工程学报,2017,13(1):86-92. [16] LIU D F, LIU C W, KANG Y M, et al. Mechanical behavior of Benxi Formation limestone under triaxial compression: a new post-peak constitutive model and experimental validation [J]. Bulletin of Engineering Geology and the Environment,2018,77(4):1701- 1715.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2019-11-20基金项目:中国博士后科学基金(2019M662577);湖北省教育厅科学研究计划项目(Q20191502);武汉工程大学博士启动基金(18QD50)作者简介:刘德峰,博士,讲师。E-mail: liudefengoopp@126.com引文格式:刘德峰,颜肃. 压力水-岩耦合作用下砂岩断口微观破坏机理[J]. 武汉工程大学学报,2020,42(4):439-443.
更新日期/Last Update: 2020-08-13