|本期目录/Table of Contents|

[1]胡媛媛,姚 波*.鱼类抗菌肽的研究进展[J].武汉工程大学学报,2020,42(01):8-17.[doi:10.19843/j.cnki.CN42-1779/TQ.201908002]
 HU Yuanyuan,YAO Bo*.Advance in Research of Fish Antimicrobial Peptides[J].Journal of Wuhan Institute of Technology,2020,42(01):8-17.[doi:10.19843/j.cnki.CN42-1779/TQ.201908002]
点击复制

鱼类抗菌肽的研究进展(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
42
期数:
2020年01期
页码:
8-17
栏目:
化学与化学工程
出版日期:
2021-01-25

文章信息/Info

Title:
Advance in Research of Fish Antimicrobial Peptides
文章编号:
1674 - 2869(2020)01 - 0008 - 10
作者:
胡媛媛姚 波*
重庆科技学院化学化工学院;工业发酵微生物重庆市重点实验室(重庆科技学院),重庆 401331
Author(s):
HU YuanyuanYAO Bo*
School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology; Chongqing Municipal Key Laboratory of Fermentative Microbes (Chongqing University of Science and Technology), Chongqing 401331, China
关键词:
鱼类抗菌肽分子设计
Keywords:
fish antimicrobial peptides molecule design
分类号:
TQ464.7
DOI:
10.19843/j.cnki.CN42-1779/TQ.201908002
文献标志码:
A
摘要:
抗菌肽是鱼类先天免疫的重要组成部分,有望成为下一代抗菌药物。收集了鱼类抗菌肽的5个大类Piscidin, Defensin, Hepcidin, Cathelicidin, Pardaxin及25个亚类的基本信息。分析了其电荷、疏水结构和二级结构的特征和比较了其对细菌、真菌的抗菌谱。探讨了电荷、疏水性、二级结构和二硫键等影响抗菌肽作用的机制。指出开发表面固定化技术,研究抗菌肽的缓控释新剂型,机器学习有助于开发活性高、抗菌谱广和低毒的新型抗菌肽。抗菌肽应用于渔业生产和防病治病,有助于开发绿色环保养殖技术,促进养殖渔业健康可持续发展。
Abstract:
Antimicrobial peptides (AMPs) are an important part of innate immune system of fish, which is a promising candidate of the next generation of antimicrobial drug. In this review, the basic information of 5 types of AMPs including Piscidin, Defensin, Hepcidin, Cathelicidin and Pardaxin and 25 subtypes was collected. The structural characteristics of AMPs including electric charge, hydrophobic structure, secondary structure were analyzed and compared their antimicrobial spectra against bacteria and fungi. The function mechanism of electric charge, hydrophobicity, secondary structure and disulfide bond was discussed. We propose that the development of surface immobilization technology, controllable delivery preparation and machine learning will provide a new route for the production of novel AMPs with high activity, broad antimicrobial spectrum and low cytotoxicity. The application of AMPs in disease prevention in fishery production will promote the development of environmental-friendly aquaculture technology and the healthy and sustainable development of aquaculture fisheries.

参考文献/References:

[1] O’NEILL J. The review on antimicrobial resistance[EB/OL]. [2014-12-15]. https: // amr -review . org /background.html. [2] KANG H K, KIM C, SEO C H, et al. The therapeutic applications of antimicrobial peptides (AMPs): a patent review[J]. Journal of Microbiology, 2017, 55(1): 1-12. [3] ZHANG L, GALLO R L. Antimicrobial peptides[J]. Current Biology, 2016, 26(1): R14-R19. [4] ANJA P, KLAUS B, G?NTHER W. Antimicrobial peptides and their therapeutic potential for bacterial skin infections and wounds[J]. Frontiers in Pharmacology, 2018, 9: 1-23. [5] MASSOSILVA J, DIAMOND G. Antimicrobial peptides from fish[J]. Pharmaceuticals, 2014, 7(3): 265-310. [6] SHABIR U, ALI S, MAGRAY A R, et al. Fish antimicrobial peptides (AMP’s) as essential and promising molecular therapeutic agents: a review[J]. Microbial Pathogenesis, 2018, 114: 50-56. [7] PAPAGIANNI M. Ribosomally synthesized peptides with antimicrobial properties: biosynthesis, structure, function, and applications[J]. Biotechnology Advances, 2003, 21(6): 465-499. [8] SILPHADUANG U, NOGA E J. Peptide antibiotics in mast cells of fish[J]. Nature, 2001, 414(6865): 268-269. [9] BAE J S, JUNG J M, AN C M, et al. Piscidin: antimicrobial peptide of rock bream, oplegnathus fasciatus[J]. Fish & Shellfish Immunology, 2016, 51: 136-142. [10] CHEN W, COTTEN M L. Expression, purification, and micelle reconstitution of antimicrobial piscidin 1 and piscidin 3 for NMR studies[J]. Protein Express and Purification, 2014, 102(10): 63-68. [11] ZOU J, MERCIER C, KOUSSOUNADIS A, et al. Discovery of multiple beta-defensin like homologues in teleost fish[J]. Molecular Immunology, 2007, 44(4): 638-647. [12] LI H, GUO H Y, SHAN S J, et al. Characterization and expression pattern of a novel β-defensin in common carp (Cyprinus carpio L.): implications for its role in mucosal immunity[J]. Bioscience, Biotechnology, and Biochemistry, 2014, 78(3): 430-437. [13] SHIKE H, LAUTH X, WESTERMAN M E, et al. Bass hepcidin is a novel antimicrobial peptide induced by bacterial challenge[J]. European Journal of Biochemistry, 2002, 269(8): 2232-2237. [14] ?LVAREZ C A, ACOSTA F, MONTERO D, et al. Synthetic hepcidin from fish: uptake and protection against vibrio anguillarum in sea bass (Dicentrarchus labrax)[J]. Fish & Shellfish Immunology, 2016, 55: 662-670. [15] VELA D, VELA-GAXHA Z. Differential regulation of hepcidin in cancer and non-cancer tissues and its clinical implications[J]. Experimental & Molecular Medicine, 2018, 50(2): 1-12. [16] ZHANG X J, ZHANG X Y, ZHANG N, et al. Distinctive structural hallmarks and biological activities of the multiple cathelicidin antimicrobial peptides in a primitive teleost fish[J]. The Journal of Immunology, 2015, 194(10): 4974-4987. [17] BALS R, WILSON J M. Cathelicidins-a family of multifunctional antimicrobial peptides[J]. Cellular & Molecular Life Sciences Cmls, 2003, 60(4): 711-720. [18] CHANG C, PLEGUEZUELOS O, ZHANG Y, et al. Identification of a novel cathelicidin gene in the rainbow trout, Oncorhynchus mykiss[J]. Infection and Immunity, 2005, 73(8): 5053-5064. [19] OREN Z, SHAI Y. A class of highly potent antibacterial peptides derived from pardaxin, a pore-forming peptide isolated from moses sole fish pardachirus marmoratus[J]. European Journal of Biochemistry,1996, 237(1): 303-310. [20] TING C H, HUANG H N, HUANG T C, et al. The mechanisms by which pardaxin, a natural cationic antimicrobial peptide, targets the endoplasmic reticulum and induces c-FOS[J]. Biomaterials, 2014, 35(11): 3627-3640. [21] SILPHADUANG U, COLORNI A, NOGA E. Evidence for widespread distribution of piscidin antimicrobial peptides in teleost fish[J]. Diseases of Aquatic Organisms, 2006, 72(3): 241-252. [22] PENG K C, LEE S H, HOUR A L, et al. Five different piscidins from nile tilapia, oreochromis niloticus: analysis of their expressions and biological functions[J]. Plos one, 2012, 7(11): 1-12. [23] FALCO A, CHICO V, MARROQU? L, et al. Expression and antiviral activity of a β-defensin-like peptide identified in the rainbow trout (Oncorhynchus mykiss) EST sequences[J]. Molecular Immunology, 2008, 45(3): 757-765. [24] CASADEI E, WANG T, ZOU J, et al. Characterization of three novel β-defensin antimicrobial peptides in rainbow trout (oncorhynchus mykiss)[J]. Molecular Immunology, 2009, 46(16): 3358-3366. [25] GARC?A-VALTANEN P, MARTINEZ-LOPEZ A, ORTEGA-VILLAIZAN M, et al. In addition to its antiviral and immunomodulatory properties, the zebrafish β-defensin 2 (zfBD2) is a potent viral DNA vaccine molecular adjuvant[J]. Antiviral Research, 2014, 101: 136-147. [26] SHIKE H, SHIMIZU C, LAUTH X, et al. Organization and expression analysis of the zebrafish hepcidin gene, an antimicrobial peptide gene conserved among vertebrates[J]. Developmental & Comparative Immunology, 2004, 28(7/8): 747-754. [27] THOMPSON S A, TACHIBANA K, NAKANISHI K, et al. Melittin-like peptides from the shark-repelling defense secretion of the sole pardachirus pavoninus[J]. Science, 1986, 233(4761): 341-343. [28] ADERMANN K, RAIDA M, PAUL Y, et al. Isolation, characterization and synthesis of a novel pardaxin isoform[J]. FEBS Letters, 1998, 435(2/3): 173-177. [29] SHAI Y, FOX J, CARATSCH C, et al. Sequencing and synthesis of pardaxin, a polypeptide from the Red Sea Moses sole with ionophore activity[J]. Febs Letters, 1988, 242(1): 161-166. [30] ZHUANG Z, YANG X, HUANG X, et al. Three new piscidins from orange-spotted grouper (epinephelus coioides): phylogeny, expression and functional characterization[J]. Fish & Shellfish Immunology, 2017, 66: 240-253. [31] CUESTA A, MESEGUER J, ESTEBAN M?. Molecular and functional characterization of the gilthead seabream β-defensin demonstrate its chemotactic and antimicrobial activity[J]. Molecular Immunology, 2011, 48(12): 1432-1438. [32] ZHU J, WANG H, WANG J, et al. Identification and characterization of a β-defensin gene involved in the immune defense response of channel catfish, Ictalurus punctatus[J]. Molecular Immunology, 2017, 85: 256-264. [33] ZHANG J, YU L P, LI M F, et al. Turbot (Scophthalmus maximus) hepcidin-1 and hepcidin-2 possess antimicrobial activity and promote resistance against bacterial and viral infection[J]. Fish & Shellfish Immunology, 2014, 38(1): 127-134. [34] ZHOU J G, WEI J G, XU D, et al. Molecular cloning and characterization of two novel hepcidins from orange-spotted grouper, epinephelus coioides[J]. Developmental & Comparative Immunology, 2011, 30(2): 559-568. [35] UZZELL T, STOLZENBERG E D, SHINNAR A E, et al. Hagfish intestinal antimicrobial peptides are ancient cathelicidins.[J]. Peptides, 2003, 24(11): 1655-1667. [36] NIZET V. Antimicrobial peptide resistance mechanisms of human bacterial pathogens[J]. Current Issues in Molecular Biology, 2006, 8(1): 11-26. [37] LEE E, JEONG K W, LEE J, et al. Structure-activity relationships of cecropin-like peptides and their interactions with phospholipid membrane[J]. Bmb Reports, 2013, 46(5): 282-287. [38] 魏晓晓, 杭柏林, 马翠, 等. 抗菌肽JH-3的抑菌活性及其稳定性分析[J]. 畜牧兽医学报, 2016, 47(2): 361-366. [39] BOBONE S. Peptide and protein interaction with membrane systems[M]. Switzerland:Springer International Publishing, 2014. [40] CHEN Y, GUARNIERI M T, VASIL A I, et al. Role of peptide hydrophobicity in the mechanism of action of α-helical antimicrobial peptides[J]. Antimicrobial Agents and Chemotherapy, 2007, 51(4): 1398-1406. [41] 郝刚. BuforinⅡ抗菌肽的分子设计及对DNA作用抑菌机理研究[D]. 无锡:江南大学, 2009. [42] WANG K, ZHANG B, ZHANG W, et al. Antitumor effects, cell selectivity and structure-activity relationship of a novel antimicrobial peptide polybia- MPI[J]. Peptides, 2008, 29(6): 963-968. [43] WEDEMEYER W J, WELKER E, NARAYAN M, et al. Disulfide bonds and protein folding[J]. Biochemistry, 2000, 39(15): 4207-4216. [44] BAI Y, LIU S, JIANG P, et al. Structure-dependent charge density as a determinant of antimicrobial activity of peptide analogues of defensin[J]. Biochemistry, 2009, 48(30): 7229-7239. [45] LEE J, LEE D, CHOI H, et al. Structure-activity relationships of the intramolecular disulfide bonds in coprisin, a defensin from the dung beetle[J]. Bmb Reports, 2014, 47(11): 625-630. [46] WANG L N, YU B, HAN G Q, et al. Design, expression and characterization of recombinant hybrid peptide Attacin-Thanatin in Escherichia coli[J]. Molecular Biology Reports, 2010, 37(7):3495-3501. [47] 张宏刚, 吴剑良, 李莉. 杂合抗菌肽Mel-MytB在毕赤酵母中的表达及其抗菌活性测定[J]. 中国畜牧兽医, 2018, 45(11): 276-282. [48] MUSTAFA S, BALKHY H, GABERE M. Peptide- protein interaction studies of antimicrobial peptides targeting middle east respiratory syndrome coronavirus spike protein: an in silico approach[J]. Advances in Bioinformatics, 2019:6815105(1-16). [49] SVENSON J, STENSEN W, BRANDSDAL B O, et al. Antimicrobial peptides with stability toward tryptic degradation[J]. Biochemistry, 2008, 47(12): 3777-3788. [50] ADAM A STR?MSTEDT, PASUPULETI M, SCHMIDTCHEN A, et al. Evaluation of strategies for improving proteolytic resistance of antimicrobial peptides by using variants of EFK17, an internal segment of LL-37[J]. Antimicrobial Agents and Chemotherapy, 2008, 53(2): 593-602. [51] 宋雪莹, 冯兴军, 李静, 等. 杂合抗菌肽牛乳铁蛋白素-天蚕素在大肠杆菌中的高效表达及其活性鉴定[J]. 微生物学通报, 2012, 39(9): 1242-1249. [52] KIM H K, LEE D G, PARK Y, et al. Antibacterial activities of peptides designed as hybrids of antimicrobial peptides[J]. Biotechnology Letters, 2002, 24(5): 347-353. [53] ARENAS I, VILLEGAS E, WALLS O, et al. Antimicrobial activity and stability of short and long based arachnid synthetic peptides in the presence of commercial antibiotics[J]. Molecules, 2016, 21(2): 1-17. [54] VAN DIJK A, MOLHOEK E M, VELDHUIZEN E J A, et al. Identification of chicken cathelicidin-2 core elements involved in antibacterial and immuno- modulatory activities[J]. Molecular Immunology, 2009, 46(13): 2465-2473. [55] NAGARAJAN D, ROY N, KULKARNI O, et al. Ω76: a designed antimicrobial peptide to combat carbapenem-and tigecycline-resistant Acinetobacter baumannii[J]. Science Advances, 2019, 5(7): 1-20. [56] YAMAZOE H. Antibody immobilization technique using protein film for high stability and orientation control of the immobilized antibody[J]. Materials Science and Engineering: C, 2019, 100: 209-214.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2019-08-02 基金项目:重庆市社会民生科技创新专项项目(cstc2016shmszx20006,cstc2017shms-kjfp80022);工业发酵微生物重庆市重点实验室(LIFM201715);重庆科技学院研究生科技创新计划项目(YKJCX1920503) 作者简介:胡媛媛,硕士研究生。E-mail:294867594@qq.com *通讯作者:姚 波,博士,副教授。E-mail:yaobo2@gmail.com 引文格式:胡媛媛,姚波. 鱼类抗菌肽的研究进展[J]. 武汉工程大学学报,2020,42(1):8-17.
更新日期/Last Update: 2020-06-09