|本期目录/Table of Contents|

[1]杜虹波,闫志国*,殷 霞,等.密度泛函理论在过渡金属氧化物催化剂中的应用[J].武汉工程大学学报,2018,40(04):366-370.[doi:10. 3969/j. issn. 1674?2869. 2018. 04. 003]
 DU Hongbo,YAN Zhiguo*,YIN Xia,et al.Application of DFT+U Method in Transition Metal Oxides Catalyst[J].Journal of Wuhan Institute of Technology,2018,40(04):366-370.[doi:10. 3969/j. issn. 1674?2869. 2018. 04. 003]
点击复制

密度泛函理论在过渡金属氧化物催化剂中的应用(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
40
期数:
2018年04期
页码:
366-370
栏目:
化学与化学工程
出版日期:
2018-08-23

文章信息/Info

Title:
Application of DFT+U Method in Transition Metal Oxides Catalyst
文章编号:
20180403
作者:
杜虹波123闫志国*123殷 霞123高 琪123

1. 武汉工程大学化工与制药学院,湖北 武汉 430205;2. 绿色化工过程教育部重点实验室(武汉工程大学),湖北 武汉 4302053. 新型反应器与绿色化学工艺重点湖北省实验室(武汉工程大学),湖北 武汉 430205
Author(s):
DU Hongbo123YAN Zhiguo*123YIN Xia123GAO Qi123

1. School of Chemical Engineering and Pharmacy,Wuhan Institute of Technology,Wuhan 430205,China; 2. Key Laboratory of Green Chemical Process(Wuhan Institute of Technology),Wuhan 430205,China;3. Hubei Key Laboratory of Novel Chemical Reactor and Green Chemical Technology(Wuhan Institute of Technology),
关键词:
密度泛函理论强关联体系过渡金属氧化物催化剂DFT+U
Keywords:
density function theory strongly correlated systems transition metal oxide catalyst DFT+U
分类号:
O641.12
DOI:
10. 3969/j. issn. 1674?2869. 2018. 04. 003
文献标志码:
A
摘要:

密度泛函理论在催化剂理论研究领域应用广泛,但传统密度泛函理论在用来研究强关联体系时仍存在不少缺陷需要修正。简单介绍了过渡金属氧化物催化剂和引入在位库伦相互作用校正的密度泛函理论(DFT+U),综述了过渡金属氧化物催化剂在环境催化、光催化、电催化等领域的应用,以及近年来国内外对于使用DFT+U方法研究过渡金属氧化物催化剂的工作,为使用DFT+U方法设计和改良过渡金属氧化物催化剂提供了思路和发展方向。
Abstract:

Density functional theory (DFT) has been widely used in the field of catalyst theory research. However, the traditional DFT has many drawbacks in the study of strongly correlated systems. The present study briefly introduced transition metal oxide catalysts and density functional theory calclations correlated by on-site coulomb intereactions (DFT+U) , reviewed the applications of transition metal oxide catalysts in environmental catalysis, photocatalysis, electrocatalysis, and the studies of the transition metal oxides catalysts with DFT+U method in recent years. It gives ideas for the further study in the design and improvement of transition metal oxides catalysts with DFT+U.

参考文献/References:


[1] 王桂茹. 催化剂与催化作用 [M]. 大连: 大连理工大学出版社, 2015. [2] LEE D W, YOO B R. Advanced metal oxide (supported) catalysts: synthesis and applications [J]. Journal of Industrial and Engineering Chemistry, 2014, 20(6): 3947-3959. [3] LUO M, MA J, LU J, et al. High-surface area CuO-CeO2 catalysts prepared by a surfactant-templated method for low-temperature CO oxidation [J]. Journal of Catalysis, 2007, 246(1): 52-59. [4] ZHEN M, ZHOU B, REN Y. Crystalline mesoporous transition metal oxides: hard-templating synthesis and application in environmental catalysis [J]. Frontiers of Environmental Science & Engineering, 2012, 7(3): 341-355. [5] MA J, WANG C, HE H. Transition metal doped cryptomelane-type manganese oxide catalysts for ozone decomposition[J]. Applied Catalysis B: Environmental, 2017, 201: 503-510. [6] ELSAFTY S A, KHAIRY M, ISMAEL M, et al. Multidirectional porous NiO nanoplatelet-like mosaics as catalysts for green chemical transformations [J]. Applied Catalysis B-Environmental, 2012,123/124(14): 162-173. [7] LI Y F, LIU Z P. Structure and water oxidation activity of 3dmetal oxides[J]. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2016, 6(1): 47-64. [8] YUE Y X, FENG Q, WANG Y. Defect formation energy and electronic properties of anatase TiO2 doped with C, N, F [J]. Journal of Functional Materials, 2013, 44(13): 1879-1883. [9] BADAWY M I, MAHMOUD F A, ABDEL-KHALEK A A, et al. Solar photocatalytic activity of sol-gel prepared Ag-doped ZnO thin films [J]. Desalination and Water Treatment, 2013, 52(13/14/15): 2601-2608. [10] ZHAO Y, WANG W, LI Y, et al. Hierarchical branched Cu2O nanowires with enhanced photocatalytic activity and stability for H2 production [J]. Nanoscale, 2014, 6(1): 195-198. [11] 李妍慧,银凤翔,何小波,等. 锂/空气电池非贵金属催化剂研究进展 [J]. 化工进展, 2015, 34(11): 3926-3932. [12] DEBART A, PATERSON A J, BAO J, et al. α-MnO2 nanowires: a catalyst for the o2 electrode in rechargeable lithium batteries [J]. Angewandte Chemie, 2008, 47(24): 4521-4524. [13] KIM K S, PARK Y J. Catalytic properties of Co3O4 nanoparticles for rechargeable Li/air batteries [J]. Nanoscale Research Letters, 2012, 7(1): 47. [14] ZHANG X F, WANG K X, WEI X, et al. Carbon-coated V2O5 nanocrystals as high performance cathode material for lithium ion batteries [J]. Chemistry of Materials, 2011, 23(24): 5290-5292. [15] LI L, FENG X, NIE Y, et al. Insight into the effect of oxygen vacancy concentration on the catalytic performance of MnO2 [J]. ACS Catalysis, 2015, 5(8): 4825-4832. [16] HOHENBERG P, KOHN W. Inhomogeneous electron gas[J]. Physical Review,1964,136(3B): B864-B871. [17] KOHN W, SHAM L J. Self-consistent equations including exchange and correlation effects [J]. Physical Review, 1965, 140(4): 1133-1142. [18] 陈志达. 量子化学的第二次革命——1998年诺贝尔化学奖简介 [J]. 大学化学, 1999, 14(3): 5-8. [19] 贺伟. 纳米及表面体系分子吸附的理论研究 [D]. 合肥: 中国科学技术大学, 2008. [20] YLVISAKER E R. DFT and DMFT: implementations and applications to the study of correlated materials [M]. Dissertations & Theses-Gradworks, 2008.[21] HIMMETOGLU B, FLORIS A, DE GIRONCOLI S, et al. Hubbard-corrected DFT energy functionals: the LDA+U description of correlated systems [J]. International Journal of Quantum Chemistry, 2014, 114(1): 14-49. [22] ANISIMOV V I, ZAANEN J, ANDERSEN O K. Band theory and Mott insulators: hubbard uinstead of stoner I [J]. Physical Review B, 1991, 44(3): 943-954. [23] ANISIMOV V I,ARYASETIAWAN F,LICHTENSTEIN A I. First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA+ U method [J]. Journal of Physics: Condensed Matter, 1997, 9(4): 767-808. [24] WANG L, MAXISCH T, CEDER G. Oxidation energies of transition metal oxides within the GGA+U framework [J]. Physical Review B, 2006, 73(19): 195017-195112. [25] FORTI M, ALONSO P, GARGANO P, et al. Transition metals monoxides. an LDA+U study [J]. Procedia Materials Science,2012(1): 230-234. [26] MORGAN B J, WATSON G W. Intrinsic n-type defect formation in TiO2: a comparison of rutile and anatase from GGA+U calculations [J]. Journal of Physical Chemistry C, 2010, 114(5): 2321-2328. [27] GAO H, LI X, LV J, et al. Interfacial charge transfer and enhanced photocatalytic mechanisms for the hybrid graphene/anatase TiO2(001) nanocomposites [J]. The Journal of Physical Chemistry C, 2013, 117(31): 16022-16027. [28] 许镇潮,侯清玉. GGA+U的方法研究Ag掺杂浓度对ZnO带隙和吸收光谱的影响 [J]. 物理学报, 2015, 64(15): 434-442. [29] DENG Z Y, ZHANG J M, XU K W. The electronic and magnetic properties of the F-doped CrO2 from first-principles study [J]. Journal of Magnetism and Magnetic Materials, 2015, 379: 196-201. [30] NODA Y, OHNO K, NAKAMURA S. Momentum- dependent band spin splitting in semiconducting MnO2: a density functional calculation [J]. Physical Chemisstry Chemical Physics, 2016, 18(19): 13294- 13303. [31] NEUFELD O, TOROKER M C. Platinum-doped α-Fe2O3 for enhanced water splitting efficiency: a DFT+U study [J]. The Journal of Physical Chemistry C, 2015, 119(11): 5836-5847. [32] MISHRA A K, ROLDAN A, DE LEEUW N H. CuO surfaces and CO2 activation: a dispersion-corrected DFT+U study [J]. The Journal of Physical Chemistry C, 2016, 120(4): 2198-2214. [33] HU W, LAN J, GUO Y, et al. Origin of efficient catalytic combustion of methane over Co3O4(110): active low-coordination lattice oxygen and cooperation of multiple active sites [J]. ACS Catalysis, 2016, 6(8): 5508-5519. [34] ZHANG Y C, PAN L, LU J, et al. Unraveling the facet-dependent and oxygen vacancy role for ethylene hydrogenation on Co3O4 (110) surface: a DFT+U study [J]. Applied Surface Science, 2017, 401(2017): 241-247. [35] TOMPSETT D A, PARKER S C, ISLAM M S. Rutile (beta-)MnO2 surfaces and vacancy formation for high electrochemical and catalytic performance [J]. Journal of the American Chemical Society, 2014, 136(4): 1418-1426. [36] SONG Y Y, WANG G C. A DFT study and microkinetic simulation of propylene partial oxidation on CuO (111) and CuO (100) surfaces [J]. The Journal of Physical Chemistry C, 2016, 120(48): 27430-27442. [37] WANAGURU P, AN J, ZHANG Q. DFT+U study of ultrathin α-Fe2O3 nanoribbons from (110) and (104) surfaces [J]. Journal of Applied Physics, 2016, 119(8): 084302. [38] BENDAVID L I, CARTER E A. CO2 adsorption on Cu2O(111): a DFT+U and DFT-D study [J]. The Journal of Physical Chemistry C, 2013, 117(49): 26048-26059. [39] MELLAN T A, MAENETJA K P, NGOEPE P E, et al. Lithium and oxygen adsorption at the β-MnO2 (110) surface [J]. Journal of Materials Chemistry A, 2013, 47(1): 14879. [40] CHEN Z, LI G, ZHENG H, et al. Mechanism of surface effect and selective catalytic performance of MnO2 nanorod: DFT+U study [J]. Applied Surface Science, 2017, 420: 205-213. [41] 刘华忠,马为川. O2分子在F掺杂锐钛矿型TiO2(001)面上吸附影响的研究 [J]. 功能材料, 2016, 47(11): 11110-11114. [42] LEI Y H, CHEN Z X. DFT+U study of properties of MoO3 and hydrogen adsorption on MoO3(010) [J]. The Journal of Physical Chemistry C, 2012, 116(49): 25757-25764.

相似文献/References:

备注/Memo

备注/Memo:

收稿日期:2017-08-20基金项目:湖北省自然科学基金重点项目(2013CFA091);武汉工程大学研究生教育创新基金(CX2017130)作者简介:杜虹波,硕士研究生。 E-mail:704424069@qq.com*通讯作者:闫志国,博士,教授,硕士研究生导师。 E-mail:samanyan@163.com引文格式:杜虹波,闫志国,殷霞,等. 密度泛函理论在过渡金属氧化物催化剂中的应用[J]. 武汉工程大学学报,2018,40(4):366-370,376.
更新日期/Last Update: 2018-08-16