|本期目录/Table of Contents|

[1]韩 颜,江海鹏,巨修练*.生物体内甲醛参与的化学反应研究进展[J].武汉工程大学学报,2018,40(01):8-16.[doi:10. 3969/j. issn. 1674?2869. 2018. 01. 002]
 HAN Yan,JIANG Haipeng,JU Xiulian*.Advances in Chemical Reaction of Formaldehyde in Organisms[J].Journal of Wuhan Institute of Technology,2018,40(01):8-16.[doi:10. 3969/j. issn. 1674?2869. 2018. 01. 002]
点击复制

生物体内甲醛参与的化学反应研究进展(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
40
期数:
2018年01期
页码:
8-16
栏目:
化学与化学工程
出版日期:
2018-02-25

文章信息/Info

Title:
Advances in Chemical Reaction of Formaldehyde in Organisms
文章编号:
20180102
作者:
韩 颜江海鹏巨修练*
武汉工程大学化工与制药学院,湖北 武汉 430205
Author(s):
HAN Yan JIANG Haipeng JU Xiulian*
School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
关键词:
内源性甲醛生物机体毒性机制代谢途径
Keywords:
endogenous formaldehyde organism mechanisms of toxicity metabolic pathway
分类号:
Q493.1
DOI:
10. 3969/j. issn. 1674?2869. 2018. 01. 002
文献标志码:
A
摘要:
为了系统地反映内源性甲醛能与生物体内的一些重要分子,如蛋白质、核酸及神经递质等发生生理生化反应,及其对结构与功能的影响,综述了人体、动植物及微生物内源性甲醛在生物体内的产生过程、产生毒性的机制及代谢途径等方面的具体的研究成果。多数研究采用甲醛捕获剂的方法消除过量的内源性甲醛,但加入的甲醛捕获剂是否干扰机体正常的甲醛生化反应途径值得考虑。因此,采用代谢调控策略对生物机体的甲醛平衡提供指导,对于全面理解和降低内源性甲醛对生命机体的影响具有重要意义。
Abstract:
Aiming at the endogenous formaldehydes reacting with important molecules in organism, such as protein, nucleic acids and neurotransmitters, and affecting their structures and functions, we have systematically reviewed the research progress of endogenous formaldehyde production, the mechanism of toxicity and metabolic pathways in organisms. Recently, the most commonly used method for eliminating excess endogenous formaldehyde is to add the capture agents, however, whether the formaldehyde capture agent interferes the normal formaldehyde biochemical reaction is worth considering. Therefore, the paper proposes the metabolic regulation strategies to achieve formaldehyde balance of organisms, which is of great significance for comprehensively understanding and reducing the effects of endogenous formaldehyde on organisms.

参考文献/References:

[1] ZUCKERMAN J A. IARC Monographs on the evaluation of carcinogenic risks to humans[J]. Journal of Clinical Pathology,1995,48(7):691-a. [2] 童志前,万有,罗文鸿,等. 内源性甲醛及其相关人类重大疾病[J].自然科学进展,2008,18(11):1201-1210. [3] CANUTO V M,LEVINE J S,AUGUSTSSON T R,et al. The young sun and the atmosphere and photochemistry of the early earth[J]. Nature,1983,305(5932):281-286. [4] PINTO J P, GLADSTONE G R, YUNG Y L. Photochemical production of formaldehyde in earth’s primitive atmosphere[J]. Science,1980,210(4466):183-185. [5] KALAPOS M P. A possible evolutionary role of formaldehyde[J]. Experimental & Molecular Medicine, 1999,31(1):1-4. [6] TRéZL L,CSIBA A,JUHáSZ S,et al. Endogenous formaldehyde level of foods and its biological significance[J]. European Food Research and Technology, 1997, 205(4):300-304. [7] YU P H, ZUO D M. Formaldehyde produced endogenously via deamination of methylamine. A potential risk factor for initiation of endothelial injury[J]. Atherosclerosis, 1996, 120(1/2):189-197. [8] TENG S, BEARD K, POURAHMAD J, et al. The formaldehyde metabolic detoxification enzyme systems and molecular cytotoxic mechanism in isolated rat hepatocytes[J]. Chemico-Biological Interactions,2001, 130-132(1/2/3):285-296. [9] TULPULE K, HOHNHOLT M C, DRINGEN R. Formaldehyde metabolism and formaldehyde induced stimulation of lactate production and glutathione export in cultured neurons[J]. Journal of Neurochemistry, 2013, 125(2): 260-272. [10] KALáSZ H. Biological role of formaldehyde, and cycles related to methylation, demethylation, and formaldehyde production[J]. Mini Reviews in Medicinal Chemistry, 2003, 3(3):175-192. [11] 郑斌,陈伟斌,徐晓林,等. 液相色谱法测定水产品中游离甲醛含量的研究[J]. 浙江海洋学院学报(自然科学版),2006,25(4):355-358. [12] KILBURN K H,WARSHAW R,THORNTON J C. Formaldehyde impairs memory, equilibrium, and dexterity in histology technicians: effects which persist for days after exposure[J]. Archives of Environmental Health:an International Journal,1987,42(2): 117-120. [13] PARKER B S,CUTTS S M,CULLINANE C,et al. Formaldehyde activation of mitoxantrone yields CpG and CpA specific DNA adducts[J]. Nucleic Acids Research, 2000, 28(4): 982-990. [14] LIN Z, LUO W, LI H, et al. The effect of endogenous formaldehyde on the rat aorta endothelial cells[J]. Toxicology Letters, 2005, 159(2): 134-143. [15] PETER H Y, CAUGLIN C, WEMPE K L, et al. A novel sensitive high-performance liquid chromatography/electrochemical procedure for measuring formaldehyde produced from oxidative deamination of methylamine and in biological samples[J]. Analytical Biochemistry, 2003, 318(2): 285- 290. [16] LYLES G A. Mammalian plasma and tissue-bound semicarbazide-sensitive amine oxidases: biochemical, pharmacological and toxicological aspects[J]. The International Journal of Biochemistry & Cell Biology, 1996, 28(3): 259-274. [17] ANDRéS N, LIZCANO J M, RODRíGUEZ M J, et al. Tissue activity and cellular localization of human semicarbazide-sensitive amine oxidase[J]. Journal of Histochemistry & Cytochemistry,2001,49(2): 209-217. [18] RAMONET D, RODRIGUEZ M, SAURA J, et al. Localization of monoamine oxidase A and B and semicarbazide-sensitive amine oxidase in human peripheral tissues[J]. Inflammopharmacology, 2003, 11(2): 111-117. [19] BIRD A. The essentials of DNA methylation[J]. Cell, 1992, 70(1):5-8. [20] REIK W, DEAN W, WALTER J. Epigenetic reprogramming in mammalian development[J]. Science, 2001, 293(5532): 1089-1093. [21] 王丽, 朱燕, 丁书茂,等. 甲醛与DNA甲基化和去甲基化[J]. 公共卫生与预防医学, 2004, 15(6):28-29. [22] 苏涛, 宋丹, 李婷,等. 核酸(脱)甲基化与内源甲醛及认知损伤[J]. 生物化学与生物物理进展, 2015, 42(3):211-219. [23] 李婷, 苏涛, 赫英舸,等. 甲醛、组蛋白(脱)甲基化与学习记忆[J]. 神经药理学报, 2014, 4(6):21-27.[24] LOPRIENO N. International agency for research on cancer (IARC) monographs on the evaluation of carcinogenic risk of chemicals to man Relevance of data on mutagenicity[J]. Mutation Research/Environmental Mutagenesis and Related Subjects, 1975, 31(3):201. [25] CRIDER K S,YANG T P, BERRY R J, et al. Folate and DNA methylation: a review of molecular mechanisms and the evidence for folate’s role[J]. Advances in Nutrition: an International Review Journal, 2012, 3(1): 21-38. [26] YAN F,FUJIMORI D G. RNA methylation by radical SAM enzymes RlmN and Cfr proceeds via methylene transfer and hydride shift[J]. Proceedings of the National Academy of Sciences,2011,108(10): 3930-3934. [27] WU H, ZHANG Y. Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation[J]. Genes & Development, 2011, 25(23): 2436-2452. [28] SANCHEZ-PULIDO L,ANDRADE-NAVARRO M A. The FTO (fat mass and obesity associated) gene codes for a novel member of the non-heme dioxygenase superfamily[J]. BMC Biochemistry, 2007, 8(1):1-6. [29] ZHENG G, DAHL J A, NIU Y, et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility[J]. Molecular Cell, 2013, 49(1): 18-29. [30] QIN Z,ZAIDI A,GAO J,et al. Decrease in Ca-ATPase activity in aged synaptosomal membranes is not associated with changes in fatty acyl chain dynamics[J]. Mechanisms of Ageing and Development, 1998, 105(3): 291-300. [31] GüLE? M, SONGUR A, SAHIN S, et al. Antioxidant enzyme activities and lipid peroxidation products in heart tissue of subacute and subchronic formaldehyde-exposed rats: a preliminary study[J]. Toxicology and Industrial Health, 2006, 22(3):117-124. [32] PETUSHOK N E,PETUSHOK B G,EL’CHANINOVA M A, et al. Functional activity of blood and liver cells under formaldehyde intoxication via inhalation[J]. Biomeditsinskaia Khimiia, 2004, 51(1):76-80. [33] DENK H, MOLDEUS P W, SCHULZ R A, et al. Hepatic organelle interaction. IV. Mechanism of succinate enhancement of formaldehyde accumulation from endoplasmic reticulum N-dealkylations[J]. The Journal of Cell Biology, 1976, 69(3): 589-598. [34] LIRDPRAPAMONGKOL K, SAKURAI H, KAWASAKI N, et al. Vanillin suppresses in vitro invasion and in vivo metastasis of mouse breast cancer cells[J]. European Journal of Pharmaceutical Sciences,2005,25(1): 57-65. [35] TENG S, BEARD K, POURAHMAD J, et al. The formaldehyde metabolic detoxification enzyme systems and molecular cytotoxic mechanism in isolated rat hepatocytes[J]. Chemico-Biological Interactions, 2001, 130: 285-296. [36] JELSKI W, SANI T A, SZMITKOWSKI M. Class III alcohol dehydrogenase and its role in the human body[J]. Postepy Higieny I Medycyny Doswiadczalnej, 2006, 60:406. [37] 童志前, 韩婵帅, 苗君叶,等. 内源性甲醛异常蓄积与记忆衰退[J]. 生物化学与生物物理进展, 2011, 38(6):575-579. [38] MARTíNEZ S E,VAGLENOVA J, SABRIà J, et al. Distribution of alcohol dehydrogenase mRNA in the rat central nervous system[J]. The FEBS Journal, 2001, 268(19): 5045-5056. [39] HO K K, ALLALI-HASSANI A, HURLEY T D, et al. Differential effects of Mg2+ ions on the individual kinetic steps of human cytosolic and mitochondrial aldehyde dehydrogenases[J]. Biochemistry, 2005, 44(22): 8022-8029. [40] OYAMA T, ISSE T, KAGAWA N, et al. Tissue-distribution of aldehyde dehydrogenase 2 and effects of the ALDH2 gene-disruption on the expression of enzymes involved in alcohol metabolism[J]. Front Biosci, 2005, 10(1): 951-960. [41] ESTONIUS M, SVENSSON S, H??G J O. Alcohol dehydrogenase in human tissues: localisation of transcripts coding for five classes of the enzyme[J]. Febs Letters, 1996, 397(2/3): 338-342. [42] UOTILA L, KOIVUSALO M. Expression of formaldehyde dehydrogenase and S-formylglutathione hydrolase activities in different rat tissues[J]. Advances in Experimental Medicine & Biology, 1997, 414:365-371. [43] MORI O, HASEBA T, KAMEYAMA K, et al. Histological distribution of class III alcohol dehydrogenase in human brain[J]. Brain Research, 2000, 852(1): 186-190. [44] NIE C L,WEI Y,CHEN X,et al. Formaldehyde at low concentration induces protein Tau into globular amyloid-like aggregates, In Vitro, and, In Vivo[J]. Plos One, 2006, 2(7):e629. [45] NIE C L,ZHANG W,ZHANG D,et al. Changes in conformation of human neuronal tau during denaturation in formaldehyde solution[J]. Protein & Peptide Letters, 2005, 12(1):75-78. [46] GULEC M, SONGUR A, SAHIN S, et al. Antioxidant enzyme activities and lipid peroxidation products in heart tissue of subacute and sub-chronic formaldehyde exposed rats; a preliminary study[J]. Toxicol and Health, 2006, 22(3):117-124. [47] YU P H, ZUO D M. Oxidative deamination of methylamine by semicarbazidesensitive amine oxidase leads to cytotoxic damage in endothelial cells possible consequences for dia-betes[J]. Diabetes,1993, 42(4):594-603. [48] TYIHáK E, BOCSI J, TIMáR F, et al. Formaldehyde promotes and inhibits the proliferation of cultured tumour and endothelial cells[J]. Cell Proliferation, 2001,34(3):135-141. [49] YU P H, DENG Y L. Endogenous formaldehyde as a potential factor of vulnerability of atherosclerosis: involvement of semicarbazide-sensitive amine oxidase-mediated methylamine turnover[J]. Atherosclerosis, 1998, 140(2): 357-363. [50] SOFFRITTI M, BELPOGGI F, LAMBERTIN L, et al. Results of long-term experimental studies on the carcinogenicity of formaldehyde and acetaldehyde in rats[J]. Annals of the New York Academy of Sciences, 2002, 982(1): 87-105. [51] HANSON A D, ROJE S. One-carbon metabolism in higher plants.[J]. Annual Review of Plant Physiology & Plant Molecular Biology,2001,52(52):119-137. [52] ACHKOR H, DíAZ M, FERNáNDEZ M R, et al. Enhanced formaldehyde detoxification by overexpression of glutathione-dependent formaldehyde dehydrogenase from Arabidopsis[J]. Plant Physiology,2003,132(4): 2248-2255. [53] FUKUSAKI E I, IKEDA T, SHIRAISHI T, et al. Formate dehydrogenase gene of arabidopsis thaliana is induced by formaldehyde and not by formic acid[J]. Journal of Bioscience and Bioengineering, 2000, 90(6): 691-693. [54] CROWTHER G J, KOSáLY G, LIDSTROM M E. Formate as the main branch point for methylotrophic metabolism in methylobacterium extorquens AM1[J]. Journal of Bacteriology, 2008, 190(14): 5057-5062. [55] YURIMOTO H, KATO N, SAKAI Y. Assimilation, dissimilation, and detoxification of formaldehyde, a central metabolic intermediate of methylotrophic metabolism[J]. The Chemical Record, 2005, 5(6): 367-375. [56] ARPS P J, FULTON G F, MINNICH E C, et al. Genetics of serine pathway enzymes in methylobacterium extorquens AM1:phosphoenolpyruvate carboxylase and malyl coenzyme A lyase.[J]. Journal of Bacteriology,1993,175(12):3776-3783. [57] KATO N, YURIMOTO H, THAUER R K. The physiological role of the ribulose monophosphate pathway in bacteria and archaea[J]. Bioscience, Biotechnology and Biochemistry, 2006, 70(1): 10-21. [58] FERENCI T, STR?M T, QUAYLE J R. Purification and properties of 3-hexulose phosphate synthase and phospho-3-hexuloisomerase from methylococcus capsulatus[J]. Biochemical Journal,1974,144(3): 477-486. [59] 金晶,吴婉欣,陈雯雯,等. 微生物甲醛代谢途径的研究进展[J]. 吉林农业,2011(4): 70-72. [60] VORHOLT J A, MARX C J, LIDSTROM M E, et al. Novel formaldehyde-activating enzyme in methylobacterium extorquens AM1 required for growth on methanol[J]. Journal of Bacteriology, 2000, 182(23):6645-6650. [61] WELANDER P V, METCALF W W. Mutagenesis of the C1 oxidation pathway in methanosarcina barkeri: new insights into the Mtr/Mer bypass pathway[J]. Journal of Bacteriology, 2008, 190(6): 1928-1936.

相似文献/References:

备注/Memo

备注/Memo:
作者简介:韩 颜,硕士研究生。E-mail:1047686915@qq.com*通讯作者:巨修练,博士,教授,博士研究生导师。E-mail: xiulianju2008@aliyun.com引文格式:韩颜,江海鹏,巨修练. 生物体内甲醛参与的化学反应研究进展[J]. 武汉工程大学学报,2018,40(1):8-16.
更新日期/Last Update: 2018-02-01