|本期目录/Table of Contents|

[1]喻徳忠,辛婷婷,赵 慧.聚合氯化钛系的制备及其对铬(Ⅵ)的混凝效果[J].武汉工程大学学报,2017,39(03):211-215.[doi:10. 3969/j. issn. 1674?2869. 2017. 03. 002]
 YU Dezhong,XIN Tingting,ZHAO Hui.Preparation of Novel Poly Titanium Coagulants and their Properties for Removal of Chromium(Ⅵ)[J].Journal of Wuhan Institute of Technology,2017,39(03):211-215.[doi:10. 3969/j. issn. 1674?2869. 2017. 03. 002]
点击复制

聚合氯化钛系的制备及其对铬(Ⅵ)的混凝效果(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
39
期数:
2017年03期
页码:
211-215
栏目:
化学与化学工程
出版日期:
2017-06-24

文章信息/Info

Title:
Preparation of Novel Poly Titanium Coagulants and their Properties for Removal of Chromium(Ⅵ)
文章编号:
20170302
作者:
喻徳忠辛婷婷赵 慧
武汉工程大学化学与环境工程学院,湖北 武汉 430205
Author(s):
YU Dezhong XIN Tingting ZHAO Hui
School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
关键词:
无机絮凝剂聚合氯化钛系铬(Ⅵ)混凝
Keywords:
inorganic flocculants poly-titanium chloride Cr(Ⅵ) coagulation
分类号:
TQ314.253
DOI:
10. 3969/j. issn. 1674?2869. 2017. 03. 002
文献标志码:
A
摘要:
采用慢速滴碱法结合掺杂改性技术,制备出新型无机絮凝剂聚合氯化钛(PTC)、聚合氯化钛铁(PTFC)和聚合氯化钛硅(PTSC). 分别研究了3种钛系絮凝剂对水体中Cr(Ⅵ)的混凝作用,探讨了碱化度、pH、投加量、温度、共存离子对Cr(Ⅵ)混凝效果的影响. 结果表明,在弱酸性条件下,当碱化度为1.5时,3种絮凝剂对Cr(Ⅵ)的去除效果最好,均达到95%以上;PTFC和PTSC的最佳投加量均低于PTC的最佳投加量,可有效节约成本;温度和共存离子对混凝效果的影响均较小,表明钛系絮凝剂有更广的适用范围. 应用于实际水样中Cr(Ⅵ)的处理,去除效果优异.
Abstract:
Novel inorganic coagulants poly-titanium chloride (PTC)poly-ferrotitanium chloride (PTFC) and poly-titanium silicon chloride (PTSC) were prepared by using a slow alkaline titration method and the dopping modification. Properties of three types of poly-titanium coagulants for the removal of Cr(Ⅵ) in water were studied, respectively. And the influences of basicity, pH, dosage, temperature and coexisting ions on coagulation effect on Cr(Ⅵ) were investigated. The results indicate that under weak acid conditions, the three types of poly-titanium coagulants perform the optimal removal efficiency of Cr(Ⅵ), all reaching over 95% when the basicity is 1.5. The optimum mass concentrations of PTFC and PTSC are both lower than those of PTC, indicating effectively saving the cost. Temperature and coexisting ions both have little influence on coagulation effect, suggesting that poly-titanium coagulants have a wider applicable range than other coagulants. In addition, the three coagulants perform well in the treatment of Cr(Ⅵ) in actual water samples.

参考文献/References:

[1] MARTINEZ S A, RODRIGUEZ M G. Dynamical modeling of theelectrochemical process to remove Cr(VI) from wastewaters in a tubular reactor[J]. Journal of Chemical Technology and Biotechnology, 2007,82(6): 582-587. [2] DINDA D, SAHA S K. Sulfuric acid doped poly diaminopyridine/graphene composite to remove high concentration of toxic Cr(VI) [J]. Journal of Hazardous Materials, 2015, 291: 93-101. [3] QIN G, MCGUIRE M J, BLUTE N K,et al. Hexavalent chromium removal by reduction with ferrous sulfate, coagulation, and filtration:? apilot-scale study[J]. Environmental Science & Technology, 2005, 39 (16): 6321-6327. [4] 杨忠莲, 高宝玉, 岳钦艳. 氯化铝和聚合氯化铝(PAC)在黄河水中的混凝效果与残留铝含量及组分[J]. 科学通报, 2011,56 (14): 1103-1111. YANG Z L, GAO B Y, YUE X Y. Coagulation performance, and speciation and concentration of residualaluminum in Yellow River water treatment with AlCl3 and polyaluminum chloride (PAC) [J]. Chinese Science Bulletin, 2011, 56 (14): 1103-1111. [5] SHARP E L, PARSONS S A, JEFFERSON B. The impact of seasonal variations in DOC arising from a moorland peat catchment on coagulation with iron and aluminium salts[J]. Environmental Pollution, 2006, 140(3): 436-443. [6] LEI M, WANG N, ZHU L H, et al. Photocatalytic reductive degradation of polybrominated diphenyl ethers on CuO/TiO2 nanocomposites: a mechanism based on the switching of photocatalytic reduction potential being controlled by the valence state of copper [J]. Applied Catalysis B: Environmental, 2016, 182: 414-423. [7] OBEE T N, BROWN R T.TiO2 photocatalysis for indoor air applications: effects of humidity and trace contaminant levels on the oxidation rates of formaldehyde, toluene, and 1,3-butadiene[J]. Environmental Science & Technology, 1995, 29(5): 1223-1231. [8] HOFFMANN M R, MARTIN S T, CHOI W, et al. Environmental applications of semiconductor photocatalysis [J]. Chemical Reviews, 1995, 95(1): 69-96. [9] ZHAO Y X, PHUNTSHO S, GAO B Y, et al.Preparation and characterization of novel polytitanium tetrachloride coagulant for water purification[J]. Environmental Science &Technology, 2013, 47(22): 12966-12975. [10] ZHAO Y X,GAO B Y, SHON H K, et al. Coagulation characteristics of titanium (Ti) salt coagulant compared with aluminum (Al) and iron (Fe) salts [J]. Journal of Hazardous Materials, 2011, 185(2): 1536-1542. [11] ZHAO Y X, GAO B Y, RONG H Y, et al. The impacts of coagulant aid-polydimethyldiallylammon- ium chloride on coagulation performances and floc characteristics in humic acid-kaolin synthetic water treatment with titanium tetrachloride [J]. Chemical Engineering Journal, 2011, 173(2): 376-384. [12] SHON H, VIGNESWARAN S, KIM I S, et al.Preparation of titanium dioxide (TiO2) from sludge produced by titanium tetrachloride (TiCl4) flocculation of wastewater [J]. Environmental Science & Technology, 2007, 41(4): 1372-1377. [13] SHON H K, VIGNESWARAN S, KANDASAMY J, et al. Preparation and characterization of titanium dioxide (TiO2) from sludge produced by TiCl4flocculation with FeCl3, Al2(SO4)3 and Ca(OH)2 coagulant aids in wastewater [J]. Separation Science & Technology, 2009, 44(7): 1525-1543. [14] OKOUR Y, SALIBY I E, SHON H K, et al. Recovery of sludge produced from Ti-salt flocculation as pretreatment to seawater reverse osmosis [J]. Desalination, 2009, 247(1/2/3): 53-63. [15] ZHAO Y X, PHUNTSHO S, GAO B Y, et al.Comparison of a novel polytitanium chloride coagulant with polyaluminium chloride: coagulation performance and floc characteristics [J]. Journal of Environmental Management, 2015, 147: 194-202. [16] DONG H Y, GAO B Y, YUE Q Y, et al. Floc properties and membrane fouling of polyferric silicate chloride and polyferric chloride: the role of polysilicic acid [J]. Environmental Science and Pollution Research, 2015, 22 (6): 4566-4574. [17] BAI S Q, NAREN G, NAKANO M, et al. Effect of polysilicic acid on the precipitation of calcium carbonate [J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2014, 445: 54-58. [18] 赵艳侠. 钛盐混凝剂的混凝行为、作用机制、絮体特性和污泥回用研究 [D]. 济南:山东大学, 2014. [19] 张明德. 废水中六价铬的测定[J]. 科学之友, 2011(9):15-16. ZHANG M D. The determination of hexavalent chromium in wastewater[J]. Friend of Science Amateurs, 2011(9): 15-16. [20] 张永智, 常青, 郝学奎,等. 高分子重金属絮凝剂CSAX除铬性能研究[J]. 净水技术, 2008, 27(2): 36-38. ZHANG Y Z, CHANG Q, HAO X K, et al. Study on chrome removal by macromolecule heavy metalflocculant CSAX [J]. Water Purification Technology, 2008, 27(2): 36-38. [21] 魏薇. 生物复合型絮凝剂去除水中重金属离子的效能及机制研究[D]. 哈尔滨:哈尔滨工业大学, 2013. [22] FITZPATRICK C S, FRADIN E, GREGOR Y J. Temperature effects on flocculation, using different coagulants [J]. Water Science & Technology, 2004,50(12):171-175. [23] 黄进. 天然水中典型阴离子对芬顿反应的影响[J]. 化学工程师, 2004,108(9): 3-6. HUANG J. The influence of typical posion in natural water to fenton[J]. Chemical Engineer, 2004,108 (9): 3-6.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2016-11-02作者简介:喻徳忠,博士,副教授. E-mail:yudezhongwh@163.com
更新日期/Last Update: 2017-06-22