|本期目录/Table of Contents|

[1]邓泉荣,李义奇,陈 恋,等.ZnO/Cu2O光伏器件性能的模拟研究[J].武汉工程大学学报,2017,39(02):158-163.[doi:10. 3969/j. issn. 1674?2869. 2017. 02. 010]
 DENG Quanrong,LI Yiqi,CHEN Lian,et al.Simulation Study on Performance of ZnO/Cu2O Photovoltaic Devices[J].Journal of Wuhan Institute of Technology,2017,39(02):158-163.[doi:10. 3969/j. issn. 1674?2869. 2017. 02. 010]
点击复制

ZnO/Cu2O光伏器件性能的模拟研究(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
39
期数:
2017年02期
页码:
158-163
栏目:
材料科学与工程
出版日期:
2017-05-04

文章信息/Info

Title:
Simulation Study on Performance of ZnO/Cu2O Photovoltaic Devices
作者:
邓泉荣12李义奇1陈 恋1王升高1
1. 等离子体化学与新材料湖北省重点实验室(武汉工程大学),湖北 武汉 430205;2. 河南省低碳及环境材料国际联合实验室(郑州大学),河南 郑州 450001
Author(s):
DENG Quanrong12 LI Yiqi1 CHEN Lian1 WANG Shenggao1
1.Hubei Key Laboratory of Plasma Chemical and Advanced Materials(Wuhan Institute of Technology), Wuhan 430205, China;2. International Centre for Designer Low-Carbon and Environmental Materials(Zhengzhou University), Zhengzhou 450001,China
关键词:
AMPS-1Dn-ZnO/p-Cu2O异质结体缺陷界面缺陷光伏器件
Keywords:
analysis of microelectronic and photonic structures-one dimensional
分类号:
O475
DOI:
10. 3969/j. issn. 1674?2869. 2017. 02. 010
文献标志码:
A
摘要:
为进一步理解n-ZnO/p-Cu2O异质结光伏器件内部运行机制和影响器件光电效率的主要因素,利用AMPS-1D光伏器件模拟软件对ZnO/Cu2O异质结器件的光伏性能进行模拟计算研究. 通过调节ZnO厚度与施主浓度、Cu2O厚度与受主浓度、背电极金属功函数对器件的输出性能进行计算和分析. 结果表明,在ZnO施主浓度为1×1019 cm-3,厚度为200 nm,Cu2O受主浓度为1×1019 cm-3,厚度为9 500 nm,背电极的功函数高于4.8 eV时,器件光电转化效率高达16.9%. 通过在Cu2O中增加体缺陷及在ZnO/Cu2O界面处增加界面缺陷,计算和分析缺陷对器件性能的影响. 当Cu2O层体缺陷浓度高于1×1017 cm-3或界面缺陷浓度高于1×1012 cm-2时,器件的光电转化效率严重衰减,说明降低Cu2O体缺陷及界面缺陷是提高器件效率的关键.
Abstract:
To explore the working mechanism and the main factors on the power conversion efficiency of n-ZnO/p-Cu2O heterojunction photovoltaic devices,we simulated the photovoltaic performance of ZnO/Cu2O heterojunction devices by using Analysis of Microelectronic and Photonic Structures-one Dimensional software.The devices performances were systematically analyzed through adjusting the thickness and donor number density of ZnO, the thickness and acceptor number density of Cu2O, as well as the back electrode work function. The results reveal that the power conversion efficiency of the optimized devices can reach 16.9% when the thickness and donor number density of ZnO are 200 nm and 1×1019 cm-3, the thickness and acceptor number density of Cu2O are 9 500 nm and 1×1019 cm-3 respectively, and the back electrode work function is higher than 4.8 eV. The influences of defects on devices performance were also analyzed by adding body defects in Cu2O and interface defects at ZnO/Cu2O interface. The conversion efficiency will deteriorate rapidly when the body defect density of Cu2O is more than 1×1017 cm-3 or the interface defect density is more than 1×1012 cm-2. Thus it is extremely important to decrease body defects of Cu2O and treat interface defects to achieve high conversion efficiency.

参考文献/References:

[1] RAFEA M A, ROUSDHY N. Determinnation of the optical band gap for amorphous and nanocrystalline copper thin films prepared by SILAR technique[J]. Journal of Physics D: Applied Physics,2009,42(1):15413-15418. [2] BALAMURUGAN B, ARUNA I, METHA B R, et al. Size-dependent conductivity-type inversion in Cu2O nanoparticles[J]. Physical Review B: Condensed Matter, 2004, 69(16):1124-1133. [3] BAUMEISTER P W. Optical absorption of cuprous oxide[J]. Physical Review, 1961,121(2):359-362. [4] GHIJSEN J, TJENG L H, ELP J V, et al. Electronic structure of Cu2O and CuO[J]. Physical Review B: Condensed Matter, 1988, 38(16): 11322-11330. [5] GHIJSEN J, TJENG L H, ESKES H, et al. Resonant photoemission study of the electronic structure of CuO and Cu2O[J]. Physical Review B,1990,42(4): 2268- 2274. [6] YAN H H,SONG P,ZHANG S, et al. Facile synthesis, characterization and gas sensing performance of ZnO nanoparticle-coated MoS2 nanosheets[J]. Journal of Alloys and Compounds,2016, 662: 118-125. [7] HE Z M,XIA Y M, TANG B, et al. Study on nanocrystalline ZnO film electrode with ZnPc dye and PbS quantum dots composite sensitization[J]. Journal of Optoelectronics, 2014, 25(8): 1506-1510. [8] YUAN Z L. Properties of a hybrid photodiode based on well-aligned ZnO nanowire array and regioregular P3HT[J]. Journal of Optoelectronics, 2014, 25(1): 36-41. [9] XIA Y M, ZHANG W, ZHANG Y F, et al. Solution growth of ZnO nanostructure arrays on FTO substrates at near room temperature[J]. Materials Letters, 2014, 131: 178-181. [10] LOFERSKI J J. Theoretical considerations governing the choice of the optimum semiconductor for photovoltaic solar energy conversion [J]. Journal of Applied Physics, 1956, 27(7): 777-784. [11] KAZUYA F, TAKEO O, TSUYOSHI A. Fabrication and characterization of ZnO/Cu2O solar cells prepared by electrodeposition[J]. Applied Physics Express, 2013, 6(8): 133-142. [12] NISHI Y,?MIYATA T,?MINAMI T. The impact of heterojunction formation temperature on obtainable conversion efficiency in n-ZnO/p-Cu2O solar cells [J]. Thin Solid Films, 2013, 528(3): 72-76. [13] ZHU L, LUO J K, SHAO G S, et al. On optical reflection at heterojunction interface of thin ?lm solar cells[J]. Solar Energy Materials & Solar Cells, 2013,111: 141-145. [14] CHEN W Z, HUANG X, CHEN C J, et al. Simulation analysis of heterojunction ZnO/CdS/Cu(In,Ca)Se2 thin-film solar cells using wxAMPS[J]. Optik- international Journal for Light and Electron Optics, 2016, 127(1): 182-187. [15] ZHU L, SHAO G S, LUO J K. Numerical study of metal oxide hetero-junction solar cells with defects and interface states[J]. Semiconductor Science and Technology,2013,28(5): 055004-1-055004-9. [16] LIU F, ZHU J, WEI J F, et al. Numerical simulation: toward the design of high-efficiency planar perovskite solar cells[J]. Journal of Applied Physics Letters, 2014, 104(25): 253508-1-253508-4.

相似文献/References:

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2017-04-25