|本期目录/Table of Contents|

[1]严 鹏,王庆虎,余 俊,等.辛基酚的碳化硅@膨胀石墨修饰电极法检测[J].武汉工程大学学报,2017,39(02):113-119.[doi:10. 3969/j. issn. 1674?2869. 2017. 02. 003]
 YAN Peng,WANG Qinghu,YU Jun,et al.Detection of Octylphenolusing with Silicon Carbide @ Expanded Graphite Modified Electrodes[J].Journal of Wuhan Institute of Technology,2017,39(02):113-119.[doi:10. 3969/j. issn. 1674?2869. 2017. 02. 003]
点击复制

辛基酚的碳化硅@膨胀石墨修饰电极法检测(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
39
期数:
2017年02期
页码:
113-119
栏目:
化学与化学工程
出版日期:
2017-05-04

文章信息/Info

Title:
Detection of Octylphenolusing with Silicon Carbide @ Expanded Graphite Modified Electrodes
作者:
严 鹏1王庆虎2余 俊1张媛媛1杨年俊1李亚伟2*万其进1*
1. 武汉工程大学化学与环境工程学院,湖北 武汉 430205;2. 武汉科技大学耐火材料与高温陶瓷国家重点实验室培育基地,湖北 武汉 430081
Author(s):
YAN Peng1 WANG Qinghu2YU Jun1ZHANG Yuanyuan1 YANG Nianjun1LI Yawei2*WAN Qijin1*
1. School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China2. The Key State Laboratory Breeding Base of Refractories and Ceramics,Wuhan University of Science and Technology,Wuhan 430081,China
关键词:
碳化硅晶须膨胀石墨化学修饰电极辛基酚
Keywords:
silicon carbide whisker expanded graphite chemical modified electrodesoctylphenol
分类号:
O657.1
DOI:
10. 3969/j. issn. 1674?2869. 2017. 02. 003
文献标志码:
A
摘要:
采用气相沉积法在膨胀石墨(EG)层片间生长碳化硅(SiC)晶须,制备出复合材料碳化硅@膨胀石墨(SiC@EG),并通过改变气相沉积的温度(分别为1 200 ℃、1 300 ℃、1 400 ℃)制备出不同形貌的SiC@EG. 所得材料用扫描电镜和循环伏安法及交流阻抗技术进行表征,结果表明1 300 ℃下制得的SiC@EG具有较好的电化学性能,将其作为新型修饰电极材料应用于对酚类环境激素的检测,研究了辛基酚在SiC@EG修饰电极上的电化学行为. 通过考察辛基酚在SiC@EG修饰电极上氧化行为的影响因素,对实验条件进行了优化. 在最优条件下,辛基酚的氧化峰电流和浓度在0.1 μmol / L~10 μmol/L范围内呈现良好的线性关系,检测限达35 nmol/L.
Abstract:
The composite materials of silicon carbide @ expanded graphite(SiC@EG) were prepared through the grown of Silicon carbide between the expanded graphite layers by vapor deposition. Different morphologies of SiC @ EG were developed by changing the temperature of vapor deposition from 1 200 ℃, 1 300 ℃ to 1 400 ℃, respectively, and they were characterized by scanning electron microscopy, cyclic voltammetry and electrochemical impedance spectroscopy. The SiC @ EG prepared at 1 300 ℃ shows the best electrochemical property, which was used a novel modified electrode material for the detection of phenolic environmental hormones, and the electrochemical behavior of octylphenol on SiC @ EG modified electrode was studied. The experimental conditions were optimized by investigating the effect of octylphenol oxidation on SiC @ EG modified electrode. Under the optimal conditions, the oxidation peak current and the concentration of octylphenol show a favorable linearity over the range of 0.1 μmol / L-10 μmol / L with the detection limit of 35 nmol / L.

参考文献/References:

[1] Endocrine disruptor[OL]. (2017-04-06)http://en.wikipedia.org/wiki/Endocrine disruptor. [2] DIAMANTI-KANDARAKIS E, BOURGUIGNON J P, GIUDICE L C, et al. Endocrine-disrupting chemicals: an endocrine society scientific statement[J]. Endocrine Reviews, 2009,30(4):293-342. [3] GAO W H, LEGIDO-QUIGLEY C. Fast and sensitive high performance liquid chromatography analysis of cosmetic creams for hydroquinone, phenol and six preservatives[J]. Journal of ChromatographyA, 2011, 1218(28): 4307-4311. [4] LI D W, ZHAI WL, LI Y T. et al. Recent progress in surface enhanced Raman spectroscopy for the detection of environmental pollutants [J]. Microchim Acta, 2014, 181(1): 23-43. [5] WANG H Y, CHEN D L, WEI Y J, et al. A localized surface plasmon resonance light scattering-based sensing of hydroquinone via the formed silver nanoparticles in system [J]. Spectrochimacta,2011,79(5): 2012- 2016. [6] JUDEFEIND A, VAN RENSBURG P J, LANGELAAR S, et al. Stable isotope dilution analysis of salicylic acid and hydroquinone in human skin samples by gas chromatography with mass spectrometric detection[J]. Journal of Chromatography B, 2007,852(1/2): 300-307. [7] ZHENG Q L, YANG P, XU H, et al.A simple and sensitive method for the determination of 4-n-octylphenol basedon multi-walled carbon nanotubes modified glassy carbon electrode[J]. Journal of Environmental Sciences, 2012,24(9):1717-1722. [8] PAN Y H, ZHAO F Q, ZENG B Z.Electrochemicalsensors of octylphenol based onmolecularly imprinted poly(3,4-ethylenedioxythiophene) and poly(3,4-ethylenedioxythiophene-gold nanoparticles)[J]. RSC Advances, 2015, 5(71):57671-57677. [9] LONG F, ZHANG Z H, WANG J,et al. Cobalt-nickel bimetallic nanoparticles decorated graphenesensitizedimprinted electrochemical sensor for determination of octylphenol[J]. Electrochimica Acta,2015,168:337- 345. [10] WAN Q J, CAI H, LIU Y,et al. Graphenenanoplatelets: electrochemical properties and applications for oxidation of endocrine-disrupting chemicals[J]. Chemistry:a European Journal, 2013, 19(10):3483-3489. [11] 杨平, 李兰芳, 蔡惠,等. 双酚A在聚茜素红/碳纳米管电极上的伏安行为[J]. 武汉工程大学学报, 2010, 32(11):18-21,24. YANG P, LI L F, CAI H, et al. Voltammetric behavior of bisphenol A on poly (alizarin red)/mwcnts/gc composite modified electrode [J]. Journal of Wuhan Institute of Technology, 2010, 32(11): 18-21,24. [12] 蔡惠,廖华玲,刘义,等. 对甲基苯酚在PLYS/TiO2-CS修饰电极上的电化学行为[J]. 武汉工程大学学报,2011, 33(12):13-17. CAI H, LIAO H L, LIU Y,et al. Electrochemical behavior of p-cresol on poly(lysine)/nano TiO2-chitosan modified electrodes and its determination[J]. Journal of Wuhan Institute of Technology, 2011,33(12): 13-17. [13] TOYODA M, INAGAKI M. Heavy oil sorption using exfoliated graphite: new application of exfoliated graphite to protect heavy oil pollution [J]. Carbon, 2000, 38(2): 199-210. [14] CHEN G H, WU D J, WENG W G, et al. Preparation of polymer/graphite conducting nanocompositebyintercalation polymerization[J]. Journal of Applied Polymer Science, 2001,82(10): 2506-2511. [15] CHEN JJ, WU R B, YANG G Y, et al. Synthesis and photoluminescence of needle-shaped 3C-SiC nanowires on the substrate of PAN carbon fiber [J]. Journal of Alloys and Compounds,2008, 456(1/2): 320-323. [16] WANG Q H, LI Y W, SANG S B, et al. Effect of reactivity and porous structure of expanded graphite (EG) on microstructure and properties of Al2O3-C refractories[J]. Journal of Alloys and Compounds, 2015, 645(5): 388-397. [17] WANG Q H, LI Y W, JIN S L, et al. Catalyst-free hybridization of silicon carbide whiskers and expanded graphite by vapor deposition method[J]. Ceramics International,2015, 41: 14359-14366. [18] URETA-ZANARTU M S, BUSTOS P, BERRIOS C, et al. Electrooxidationof 2,4-dichlorophenol and other polychlorinated phenols at a glassy carbon electrode[J]. Electrochimica Acta,2002,47(15):2399-2406. [19] 邵元华, 朱果逸, 董献堆, 等. 电化学方法原理和应用. 第二版[M]. 北京: 化学工业出版社, 2005: 407-410. [20] ADEKUNLE A S, OZOEMENA K I. Electron transport and electrocatalytic properties of MWCNT/nickel nanocomposites: hydrazine and diethylamino- ethanethiol as analytical probes [J]. Journal of Electroanalytical Chemistry, 2010, 645(1):41-49.

相似文献/References:

[1]郑葛花,郭 畅,张媛媛*,等.基于纳米CeO2/膨胀石墨的四溴双酚A电化学传感[J].武汉工程大学学报,2019,(02):115.[doi:10. 3969/j. issn. 1674?2869. 2019. 02.]
 ZHENG Gehua,GUO Chang,ZHANG Yuanyuan*,et al.Electrochemical Sensing of Tetrabromobisphenol A Based on Nano-CeO2/Expanded Graphite[J].Journal of Wuhan Institute of Technology,2019,(02):115.[doi:10. 3969/j. issn. 1674?2869. 2019. 02.]

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2017-04-25