|本期目录/Table of Contents|

[1]高 海,喻九阳*,徐建民,等.低温油封冷却器的结构优化及数值模拟[J].武汉工程大学学报,2016,38(4):394-398.[doi:10. 3969/j. issn. 1674?2869. 2016. 04. 015]
 GAO Hai,YU Jiuyang*,XU Jianmin,et al.Structure Optimization and Numerical Simulation of Low-Temperature Oil Seal Cooler[J].Journal of Wuhan Institute of Technology,2016,38(4):394-398.[doi:10. 3969/j. issn. 1674?2869. 2016. 04. 015]
点击复制

低温油封冷却器的结构优化及数值模拟(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
38
期数:
2016年4期
页码:
394-398
栏目:
机电工程
出版日期:
2016-08-28

文章信息/Info

Title:
Structure Optimization and Numerical Simulation of Low-Temperature Oil Seal Cooler
作者:
高 海喻九阳*徐建民郑小涛林 纬
武汉工程大学机电工程学院,湖北 武汉 430205
Author(s):
GAO Hai YU Jiuyang* XU Jianmin ZHENG Xiaotao LIN Wei
School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
关键词:
冷却器折流板开孔结构优化强化传热数值模拟
Keywords:
cooler perforated baffle structure optimization enhancement of heat transfer numerical simulation
分类号:
TQ051
DOI:
10. 3969/j. issn. 1674?2869. 2016. 04. 015
文献标志码:
A
摘要:
针对管壳式换热器折流板背部存在流动死区的问题,对换热器壳程折流板的结构进行优化,并且通过数值模拟分别研究了折流板开圆孔和锥形孔对低温油封冷却器换热性能和压降的影响. 数值模拟结果表明,当壳程入口速度低于1.3 m/s,折流板开圆孔更有利于减小折流板背部流动死区,改善冷却器壳程的强化传热性能;当壳程入口流速大于2 m/s时,折流板开锥形孔更有利于冷却器壳程的强化传热. 折流板开圆孔和锥形孔均有利于减小冷却器壳程压降,两者对压降的影响无明显差别.
Abstract:
Aiming at the shell-and-tube heat transfer existing stagnant zones at the back of baffle, we optimized the structure of the baffle in shell-side of the heat exchanger, and studied the effects of the baffle with round and taper hole on the performance of heat transfer and pressure-drop of the low-temperature oil seal cooler by numerical simulation respectively. Result shows that the baffle with round hole is more conductive to reduce stagnant zones at the back of baffle and improve the performance of heat transfer of the cooler when the velocity of shell-side entrance is less than 1.3 m/s; and the baffle with taper hole is more advantageous to enhance the heat transfer of the cooler when the velocity of shell-side entrance is more than 2 m/s. Moreover, the baffles with round and taper hole are beneficial to reduce the pressure-drop of shell-side with almost the same effects.

参考文献/References:

[1] 林宗虎. 强化传热及工程应用[M]. 北京:机械工业出版社,1985. [2] 钱才富,高宏宇,孙海阳. 曲面弓形折流板换热器壳程流体流动与传热[J]. 化工学报,2011(5):1233-1238. QIAN C F,GAO H Y,SUN H Y.Shell-side fluid flow and heat transfer in curved baffle heat exchanger[J]. Journal of chemical industry and engineering,2011(5):1233-1238. [3] 郭土,马贵阳,石龙,等. 折流板开孔对管壳式换热器性能的影响[J]. 辽宁石油化工大学学报,2013,33(3):47-50. GUO T,MA G Y,SHI L,et al. Effect of opening on the performance of shell-and-tube heat exchanger[J]. Journal of Liaoning university of petroleum & chemical technology,2013,33(3):47-50. [4] 郭土,马贵阳,张一楠, 等. 球面弓形折流板换热器折流板曲率半径的优化研究[J]. 当代化工,2013,42(10):1392-1394. GUO T,MA G Y,ZHANG Y N,et al. Optimization research of baffle curvature radius in spherical baffle heat exchanger[J]. Contemporary chemical industry,2013,42(10):1392-1394. [5] 郑小涛,徐成. 油封低温冷却器折流板开孔的传热性能[J]. 武汉工程大学学报,2012,34(9):62-65. ZHENG X T, XU C. Performance of low-temperature oil seal cooler with perforated baffle[J]. Journal of Wuhan institute of technology,2012,34(9):62-65. [6] 付磊,唐克伦,文华斌,等. 管壳式换热器流体流动与耦合传热的数值模拟[J]. 化工进展,2012,31(11):2384-2389. FU L,TANG K L,WEN H B,et al. Numerical simulation of shell and tube heat exchanger fluid flow and coupled heat transfer[J]. Chemical industry and engineering progress,2012,31(11):2384-2389. [7] 贺俊杰. 管壳式换热器壳程数值模拟及结构优化研究[D]. 哈尔滨:哈尔滨工程 大学,2011. [8] 高宏宇,钱才富. 曲面弓形折流板换热器壳程压力降的数值模拟[J]. 压力容器,2010,27(2):24-27. GAO H Y,QIAN C F. Numerical simulation of pressure drop in shell side of curved baffle heat exchanger[J]. Pressure vessel,2010,27(2):24-27. [9] 王为良. 管壳式换热器壳侧流场数值模拟[D]. 北京:中国石油大学,2010. [10] 喻九阳,徐成. 低温油封冷却器折流板开孔性能机理研究[J]. 工程热物理学报,2014,35(2):371-374. YU J Y,XU C. Mechanism research the performance of low-temperature oil seal cooler with perforated baffle[J]. Journal of engineering thermophysics,2014,35(2):371-374. [11] 叶萌,喻九阳. 高粘度流质下管壳式折流板开孔换热器换热性能的数值模拟[J]. 当代化工,2015,44(1):212-214. YE M,YU J Y.Numerical simulation on the performance of the heat exchanger with perforated baffle in high viscosity fluid[J]. Contemporary chemical industry,2015,44(1):212-214.本文编辑:陈小平

相似文献/References:

备注/Memo

备注/Memo:
更新日期/Last Update: 2016-07-29