|本期目录/Table of Contents|

[1]马璐璐,吴 杰,吕 中*.纳米氧化铜与庆大霉素协同抗MRSA作用的研究[J].武汉工程大学学报,2016,38(3):266-230.[doi:10. 3969/j. issn. 1674?2869. 2016. 03. 004]
 MA Lulu,WU Jie,LYU Zhong*.Synergistic Antibacterial Effection of CuO Nanoparticles Combined with Gentamicin Against Methicillin-Resistant Staphylococcus Aureus[J].Journal of Wuhan Institute of Technology,2016,38(3):266-230.[doi:10. 3969/j. issn. 1674?2869. 2016. 03. 004]
点击复制

纳米氧化铜与庆大霉素协同抗MRSA作用的研究(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
38
期数:
2016年3期
页码:
266-230
栏目:
化学与化学工程
出版日期:
2016-06-22

文章信息/Info

Title:
Synergistic Antibacterial Effection of CuO Nanoparticles Combined with Gentamicin Against Methicillin-Resistant Staphylococcus Aureus
作者:
马璐璐吴 杰吕 中*
武汉工程大学化工与制药学院,湖北 武汉 430074
Author(s):
MA Lulu WU Jie LYU Zhong*
School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430074, China
关键词:
纳米氧化铜庆大霉素MRSA协同抗菌作用
Keywords:
CuO nanoparticlesgentamicin MRSA synergistic antibacterial effect
分类号:
0621
DOI:
10. 3969/j. issn. 1674?2869. 2016. 03. 004
文献标志码:
A
摘要:
筛选具有协同抗耐药菌活性的纳米材料与抗生素组合是解决抗生素耐药问题的有效手段之一. 采用水热法合成粒径为20 nm的氧化铜纳米颗粒,通过抑菌圈法测定对耐甲氧西林金黄色葡萄球菌 (MRSA)具有明显耐药性的抗生素庆大霉素、环丙沙星、哌拉西林、头孢呋辛和头孢噻肟与纳米氧化铜的联合抗菌作用,筛选具有协同作用的纳米氧化铜-抗生素组合. 通过棋盘法测定纳米氧化铜-抗生素组合的部分抑菌浓度指数 (FIC),并在此基础上测定两者对MRSA的时间-杀菌曲线. 实验结果表明纳米氧化铜与庆大霉素联用比两者单独使用的抑菌圈面积增大0.88倍,FIC值小于0.5,两者联用能够显著抑制细菌生长.
Abstract:
Screening the combination of antibiotics and nanomaterials which has synergy antibacterial activity against drug-resistant bacteria is one of the effective ways to solve the problem of antibiotic resistance. The CuO nanoparticles with size around 20 nm were prepared by the hydrothermal method. The antibacterial effects of the CuO combined with antibiotics of gentamicin, ciprofloxacin, piperacillin, cefuroxime and cefotaxime, which are resistant to methicillin-resistant staphylococcus aureus (MRSA) were determined by the inhibition zone test. The fractional inhibitory concentration index (FIC) of the combination of CuO and gentamycin was determined by the checkerboard method, and time-kill curves against MRSA were also determined. The results show that the inhibition zone’s area of the combination increases by 88 % than that of the two components used separately, and FIC value is less than 0.5. The combination of CuO with gentamycin significantly inhibits the growth of MRSA.

参考文献/References:

[1] BROOKS B D, BROOKS A E. Therapeutic strategies to combat antibiotic resistance[J]. Advanced drug delivery reviews, 2014, 78: 14-27. [2] D’COSTA V M, KING C E, KALAN L, et al. Antibiotic resistance is ancient[J]. Nature,2011, 477(7365): 457-461. [3] FISCHBACH M A, WALSH C T. Antibiotics for emerging pathogens[J]. Science, 2009, 325(5944): 1089-1093. [4] HAJIPOUR M J, FROMM K M, AKBAR A A, et al. Antibacterial properties of nanoparticles[J]. Trends in biotechnology, 2012, 30(10): 499-511. [5] 高艳玲, 刘熙, 王宗贤, 等. 纳米金属氧化物对食品污染菌的杀、抑能力研究[J]. 食品科学, 2005, 26(4): 45-48. GAO Y L, LIU X, WANG Z X, et al. Antibacterial effects nano-structural metal oxide’s on bacterium contaminatied food[J]. Food science, 2005, 26(4): 45-48. [6] DHANESWAR-DAS B C N, PINKEE P, SWAPAN K D. Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application[J]. International journal of nanomedicine, 2013(8): 889-898. [7] 缪玲玲,杜文姬,陈昌云, 等. 微波水热法合成纳米氧化铜及抗菌性能[J]. 化工时刊, 2013, 27(8): 10-13. MIAO L L, DU W J, CHEN C Y, et al. Microwave assisted hydrothermal synthesis and antibacterial properties of nanosized cupric oxide[J]. Chemical industry times, 2013, 27(8): 10-13. [8] AZAM A, AHMED A S, OVES M, et al. Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and -negative bacterial strains[J]. International journal of nanomedicine, 2012(7): 3527-3535. [9] MCSHAN D, ZHANG Y, DENG H, et al. Synergistic antibacterial effect of silver nanoparticles combined with ineffective antibiotics on drug resistant Salmonella typhimurium DT104[J]. Journal of environmental science and health, part C: environmental carcinogenesis & ecotoxicology reviews, 2015, 33(3): 369-384. [10] LUO Z, WU Q, XUE J, et al. Selectively enhanced antibacterial effects and ultraviolet activation of antibiotics with ZnO nanorods against Escherichia coli[J]. Journal of biomedical nanotechnology, 2013, 9(1): 69-76. [11] NOORA M, MANNISTO N A, KARP, et al. In vitro bioluminescence ssed as a method for real-time inhibition zone testing for antibiotic-releasing composites[J]. British microbiology research journal, 2014, 4(2): 235-254. [12] ESPINEL-INGROFF A, CHOWDHARY A, GONZALEZ G M, et al. Multicenter study of isavuconazole MIC distributions and epidemiological cutoff values for Aspergillus spp. for the CLSI M38-A2 broth microdilution method[J]. Antimicrobial agents and chemotherapy, 2013, 57(8): 3823-3828. [13] BHUSAL Y, SHIOHIRA C M, YAMANE N. Determination of in vitro synergy when three antimicrobial agents are combined against Mycobacterium tuberculosis[J]. International journal of antimicrobial agents, 2005, 26(4): 292-297. [14] OLAJUYIGBE O O, AFOLAYAN A J. Synergistic interactions of methanolic extract of acacia mearnsii de wild with antibiotics against bacteria of clinical relevance[J]. International journal of molecular sciences, 2012, 13(7): 8915-8932. [15] STAPLETON P D, TAYLOR P W. Methicillin resistance in Staphylococcus aureus: mechanisms and modulation[J]. Science progress, 2002, 85(1): 57-72.

相似文献/References:

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2016-06-23