|本期目录/Table of Contents|

[1]王 岩,赵胤程,陈金芳*.尖晶石LiNi0.5Mn1.5O4薄膜的制备及电化学研究进展[J].武汉工程大学学报,2016,38(1):24-28.[doi:10. 3969/j. issn. 1674-2869. 2016. 01. 004]
 WANG Yan,ZHAO Yincheng,CHEN Jinfang.Research Progress in Synthesis and Electrochemical Properties ofSpinel LiNi0.5Mn1.5O4 Thin Films[J].Journal of Wuhan Institute of Technology,2016,38(1):24-28.[doi:10. 3969/j. issn. 1674-2869. 2016. 01. 004]
点击复制

尖晶石LiNi0.5Mn1.5O4薄膜的制备及电化学研究进展()
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
38
期数:
2016年1期
页码:
24-28
栏目:
化学与化学工程
出版日期:
2016-03-07

文章信息/Info

Title:
Research Progress in Synthesis and Electrochemical Properties ofSpinel LiNi0.5Mn1.5O4 Thin Films
文章编号:
1674-2869(2016)01-0024-06
作者:
王 岩12赵胤程1陈金芳123*
1. 武汉工程大学化工与制药学院,湖北 武汉 430074;2. 绿色化工过程教育部重点实验室(武汉工程大学),湖北 武汉 430074;3. 新型反应器与绿色化学工艺重点实验室(武汉工程大学),湖北 武汉 430074
Author(s):
WANG Yan12ZHAO Yincheng1CHEN Jinfang123
Research Progress in Synthesis and Electrochemical Properties of Spinel LiNi0.5Mn1.5O4 Thin Films
关键词:
薄膜锂离子电池LiNi0.5Mn1.5O4薄膜电化学性能结构稳定性
Keywords:
thin?film lithium?ion battery LiNi0.5Mn1.5O4 thin?film electrochemical property structural stability
分类号:
O646.541
DOI:
10. 3969/j. issn. 1674-2869. 2016. 01. 004
文献标志码:
A
摘要:
系统地介绍了LiNi0.5Mn1.5O4薄膜的制备方法:静电喷雾沉积、电泳沉积、溶胶凝胶、脉冲激光溅射沉积及射频磁控溅射沉积,分析了这些制备方法对LiNi0.5Mn1.5O4薄膜结构和电化学性能的影响机制. 其中,脉冲激光溅射沉积法和射频磁控溅射沉积法制备的薄膜因具有致密性好、附着力强、表面均匀、厚度易控等优势,近年来正逐渐受到重视. 并提出通过掺杂、表面修饰、优化成膜参数、缩小晶粒尺寸、添加缓冲材料等一系列有效途径, 提高LiNi0.5Mn1.5O4正极薄膜的循环稳定性及锂离子扩散系数.
Abstract:
The preparation methods of LiNi0.5Mn1.5O4 thin?film, including electrostatic spray deposition, electrophoretic deposition, sol?gel, pulsed laser deposition and radio frequency magnetron sputtering were reviewed. The influences mechanism of the methods on crystal structure and electrochemical properties were analyzed, respectively. It was found that the pulsed laser deposition and radio frequency magnetron sputtering have drawn more and more attentions because of their advantages, such as high density, excellent adhesion, thickness uniformity and easy to be handled. Finally, to further improve cycle stability and lithium?ion diffusion coefficient, we proposed several effective ways, such as doping, modifying surface, optimizing deposition parameters, reducing grain size and adding buffer layer.

参考文献/References:

[1] KOENEMAN P B, BUSCH-VISHNIAC I J, WOOD K L. Feasibility of micro power supplies for MEMS[J]. Journal of microelectromechanical systems, 1997, 6(4): 355-362. [2] WANG Y, YANG G, YANG Z, et al. High power and capacity of LiNi0.5Mn1.5O4 thin films cathodes prepared by pulsed laser deposition[J]. Electrochimica acta,2013, 102: 416-422. [3] ZHONG G B, WANG Y Y, ZHANG Z C, et al. Effects of Al substitution for Ni and Mn on the electrochemical properties of LiNi0.5Mn1.5O4[J]. Electrochimica acta, 2011, 56 (18): 52-55. [4] MOHAMEDI M, MAKINO A, DOKKO K, et al. Electrochemical investigation of LiNi0.5Mn1.5O4 thin film intercalation electrodes[J]. Electrochimica acta, 2002, 48(1): 79-84. [5] LAFONT U, ANASTASOPOL A, GARCIA-TAMAYO E, et al. Electrostatic spray pyrolysis of LiNi0.5Mn1.5O4 films for 3D Li-ion microbatteries[J]. Thin solid films, 2012, 520: 3464-3471. [6] CABALLERO A, HERNáN L, MELERO M, et al. LiNi0.5Mn1.5O4 thick-film electrodes prepared by electrophoretic deposition for use in high voltage lithium-ion batteries[J]. Journal of power sources, 2006, 158(1): 583-590. [7] ARREBOLA J C, CABALLERO A, HERNAN L, et al. Electrochemical properties of LiNi0.5Mn1.5O4 films prepared by spin-coating deposition[J]. Journal of power sources, 2006, 162(1): 606-613. [8] HOSHINA K, YOSHIMA K, KOTOBUKI M, et al. Fabrication of LiNi0.5Mn1.5O4 thin film cathode by PVP sol-gel process and its application of all-solid-state lithium ion batteries using Li1+xAlxTi2-x(PO4)3 solid electrolyte[J]. Solid state ionics, 2012, 209-210: 30-35. [9] LEE J H, KIM K J. Structural and electrochemical evolution with post-annealing temperature of solution-based LiNi0.5Mn1.5O4 thin-film cathodes for microbatteries with cyclic stability[J]. Electrochimica acta, 2014, 137: 169-174. [10] XIA H, TANG S B, LU L, et al. The in?uence of preparation conditions on electrochemical properties of LiNi0.5Mn1.5O4 thin ?lm electrodes by PLD[J]. Electrochimica acta, 2007, 52: 2822-2828. [11] XIA H, MENG Y S, LU L, et al. Electrochemical properties of nonstoichiometric LiNi0.5Mn1.5O4-δ thin- film electrodes prepared by pulsed laser deposition [J]. Journal of the electrochemical society, 2007, 154(8): A737-A743. [12] XIA H, LU L. Li diffusion in spinel LiNi0.5Mn1.5O4 thin ?lms prepared by pulsed laser deposition[J]. Physica scripta, 2007, 129: 43-48. [13] WANG H, XIA H, LAI M O, et al. Enhancements of rate capability and cyclic performance of spinel LiNi0.5Mn1.5O4 by trace Ru-doping[J]. Electrochemistry communications, 2009, 11: 1539-1542. [14] WANG L P, LI H, COURTY M, et al. Preparation and characterization of LiNi0.5Mn1.5O4-δ thin ?lms taking advantage of correlations with powder samples behavior[J]. Journal of power sources, 2013, 232: 165-172. [15] KAWAURA H, TAKAMATSU D, MORI S, et al. High potential durability of LiNi0.5Mn1.5O4 electrodes studied by surface sensitive X-ray absorption spectroscopy[J]. Journal of power sources, 2014, 245: 816-821. [16] KONISHI H, SUZUKI K, TAMINATO S, et al. Structure and electrochemical properties of LiNi0.5Mn1.5O4 epitaxial thin film electrodes[J]. Journal of power sources, 2014, 246: 365-370. [17] WANG Y, PENG Q, YANG G, et al. High-stability 5V spinel LiNi0.5Mn1.5O4 sputtered thin film electrodes by modifying with aluminium oxide[J]. Electrochimica acta, 2014, 136: 450-456. [18] WANG Y, YANG G, PENG Q, et al. Excellent electrochemical performance and thermal stability of LiNi0.5Mn1.5O4 thin-film cathode prepared by pulsed laser deposition[J]. Advanced materials research, 2014, 853: 83-89. [19] BAGGETTO L, UNOCIC R R, DUDNEY N J, et al. Fabrication and characterization of Li-Mn-Ni-O sputtered thin film high voltage cathodes for Li-ion batteries[J]. Journal of power sources, 2012, 211: 108-118. [20] BAGGETTO L, DUDNEY N J, VEITH G M. Surface chemistry of metal oxide coated lithium manganese nickel oxide thin film cathodes studied by XPS[J]. Electrochimica acta, 2013, 90: 135-147. [21] SU S H, CHIU K F, LEU H J. Structural evolution of bias sputtered LiNi0.5Mn1.5O4 thin ?lm cathodes for lithium ion batteries[J]. Thin solid films,2014,572: 15- 19. [22] SUN Y K, HONG K J, PRAKASH J, et al. Electrochemical performance of nano-sized ZnO-coated LiNi0.5Mn1.5O4 spinel as 5 V materials at elevated temperatures[J].Electrochemistry communications, 2002, 4(4): 344-348. [23] SUN Y K, YOON C S, OH I H. Surface structure change of ZnO-coated LiNi0.5Mn1.5O4 spinel as 5 V cathode materials at elevated temperatures[J]. Electrochimica acta, 2003, 48(5): 503-506. [24] WU F, TAN G, LU J, et al. Stable nanostructured cathode with polycrystalline Li-deficient Li0.28Co0.29Ni0.30Mn0.20O2 for lithium-ion batteries[J]. Nano letters, 2014, 14: 1281-1287. [25] TAN G, WU F, LU J, et al. Controllable crystalline preferred orientation in Li-Co-Ni-Mn oxide cathode thin ?lms for all-solid-state lithium batteries[J]. Nanoscale, 2014(6): 10611-10622.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2006-01-09作者简介:王 岩,博士,讲师. E-mail:wylzrfd@163.com*通讯作者:陈金芳,硕士,教授. E-mail:farmer5712@163.com
更新日期/Last Update: 2016-02-27