|本期目录/Table of Contents|

[1]张更真.来那度胺中间体的水相合成[J].武汉工程大学学报,2012,(05):20-22,60.[doi:103969/jissn16742869201205006]
 ZHANG Geng\|zhen.Synthesis of Lenalidomide intermediates in water[J].Journal of Wuhan Institute of Technology,2012,(05):20-22,60.[doi:103969/jissn16742869201205006]
点击复制

来那度胺中间体的水相合成(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
期数:
2012年05期
页码:
20-22,60
栏目:
化学与化学工程
出版日期:
2012-05-31

文章信息/Info

Title:
Synthesis of Lenalidomide intermediates in water
文章编号:
6742869(2012)05002003
作者:
张更真
浙江贝得药业有限公司,浙江 绍兴 312071
Author(s):
ZHANG Geng\|zhen
Zhejiang Better Pharmaceuticals Company Limited,Shaoxing 312071,China
关键词:
来那度胺中间体溴化绿色介质产率
Keywords:
lenalidomide intermediatesbrominationgreen mediumyield
分类号:
TM 344.1
DOI:
103969/jissn16742869201205006
文献标志码:
A
摘要:
传统的N-溴代丁二酰亚胺(NBS)α\|溴代反应是用光引发偶氮二异丁腈(AIBN)产生自由基,在四氯化碳或者其它氯化有机溶剂中进行.在水介质中,采用加热到80~85 ℃、控制搅拌速度为20~30 r/min产生自由基引发α\|溴代反应的方法合成来那度胺中间体:2\|溴甲基\|3\|硝基苯甲酸甲酯.该反应条件下2\|甲基\|3\|硝基苯甲酸甲酯转变为熔融态,在水中形成两相,目标产物产率可达80%,纯度为93%.不需要光照和有毒溶剂,2\|溴甲基\|3\|硝基苯甲酸甲酯容易通过可变速度搅拌和耐酸设备进行工业化生产.
Abstract:
N\|bromosuccinimide (NBS) side\|chain bromination reaction of alkyl arenes was traditionally conducted by lighting\|initiated azobisisobutyronitrile (AIBN) generating free radicals in CCl4 or other chlorinated solvents. In the water medium, by heating to 80~85 ℃ with the stirring rate of 20~30 r/min, the generated free radicals initiated α\|bromination to synthesize Lenalidomide intermediates: 2\|Bromomethyl\|3\|nitrobenzoic acid methyl ester; methyl 2\|methyl\|3\|nitrobenzoate became molten state and two\|phases were formatted in water; the yield of the aimed product is up to 80% with purity of 93%. Without lighting and toxic solvents, 2\|Bromomethyl\|3\|nitrobenzoic acid methyl ester is easily industrialized in variable speed mixing and anti\|acid equipment.

参考文献/References:

[1]Kale V,List A F. Immunomodulatory drugs (IMiDs): a new treatment option for myelodysplastic syndromes [J]. Current Pharmaceutical Biotechnology, 2006, 7 (5):339-342.
[2]Dredge K, Marriott J B, Macdonald C D. Novel thalidomide analogues display anti\| angiogenic activity independently of immunomodulatory effects [J]. British Journal of Cancer,2002, 87(10):1166-1172.
[3]Andritsos L A,Johnson A J,Lozanski G,et al. Higher doses of lenalidomide are associated with unacceptable toxicity including life\|threatening tumor flare in patients with chronic lymphocytic leukemia [J]. Journal of Clinical Oncology, 2008, 26(15): 2519-2525.
[4]Smith M B, March J. March’s Advanced Organic Chemistry: Reactions, Mechanisms and Structure[M]. 5th Edition.Hoboken, N.J.: Wiley\|Interscience, 2001: 911-914.
[5]Djerassi C. Brominations with N\|Bromosuccinimide and Related Compounds. The Wohl\|Ziegler Reaction [J]. Chemical Reviews,1948, 43(2):271-317.
[6]Binsch G,Kessler H. The Kinetic and Mechanistic Evaluation of NMR Spectra. New analytical methods [J].Angewandte Chemie International Edition, 1980, 19(6): 411-428.
[7]Muuler G W, Stirling D I, Chen R, et al. 2\|(2,6\|dioxopiperidin\|3\|yl)\|phthalimides and \|1\|oxoisoindolines and method of reducing TNFalpha levels:WO,9803502[P]. 1998-01-29.
[8]Muller G W,Chen R, Huang S Y,et al. Amino\|substituted thalidomide analogs: Potent inhibitors of TNF\|α production [J]. Bioorganic & Medicinal chemistry Letters, 1999, 9(11):1625-1630.
[9]Chistiane V, Joelle B, Yann P,et al. Chiral NADH models with restricted or blocked rotation at the amide function: attempts to interpret the mechanism of the enantioselective hydrogen transfer to methyl benzoylformate [J]. Tetrahedron, 2001, 57(44): 9101-9108.
[10]Fox D J,Reckless J,Warren S G, et al. Design, synthesis and preliminary pharmacological evaluation of N\|alkyl 3\|aminoglutarimides as broad\|spectrum chemokine inhibitors in vitro and anti\|inflammatory agents in vivo [J]. Journal of Medicinal Chemistry, 2002, 45(2):360-370.
[11]Abe M,Akiyama T, Umezawa Y, et al. Synthesis and biological activity of sulphostin analogues, novel dipeptidyl peptidase IV inhibitors [J]. Bioorganic Medicinal Chemistry, 2005, 13(3):785-797.
[12]Narayan S, Muldoon J, Finn M G,et al. On Water:Unique Reactivity of Organic Compounds in Aqueous Suspension [J]. Angewandte Chemie International Edition ,2005, 44(21):3275-3279.
[13]Butler R N,Coyne A G. Water: nature’s reaction enforcer\|comparative effects for organic synthesis‘in\|water’ and ‘on\|water’ [J]. Chemical Reviews ,2010, 110(3):6302-6337.
[14]Engberts J B F N, Blandamer M J. Understanding organic reactions in water: fromhydrophobic encounters to surfactant aggregates [J]. Chemical Communications ,2001(8):1701-1708.
[15]Klijn J E, Engberts J B F N. In “Organic chemistry: Fast reactions ‘on water’” [J].Nature ,2005, 435:746-747.
[16]Chanda A, Fokin V V. Organic Synthesis “On Water”[J].Chemical Reviews ,2009, 109(2):725-748.
[17]Ajda P, Stojan S, Marko Z, et al. Visible light induced ‘on water’ benzylic bromination with N\|bromosuccinimide [J]. Tetrahedron Letters, 2006, 47(7): 1097-1099.
[18]Pirrung M C, Sarma K D, Wang J M. Hydrophobicity and Mixing Effects on Select Heterogeneous, Water\|Accelerated Synthetic Reactions [J]. The Journal Organic Chemistry, 2008, 73(22):8723-8730.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:20120405作者简介:张更真(1977-),男,山东菏泽人,工程师.研究方向:抗肿瘤类药物.
更新日期/Last Update: